• Title/Summary/Keyword: star formation rate

Search Result 140, Processing Time 0.022 seconds

MOLECULAR GAS PROPERTIES UNDER ICM PRESSURE IN THE CLUSTER ENVIRONMENT

  • LEE, BUMHYUN;CHUNG, AEREE
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.491-494
    • /
    • 2015
  • We present 12CO (2-1) data for four spiral galaxies (NGC 4330, NGC 4402, NGC 4522, NGC 4569) in the Virgo cluster that are undergoing different ram pressure stages. The goal is to probe the detailed molecular gas properties under strong intra-cluster medium (ICM) pressure using high-resolution millimeter data taken with the Submillimeter Array (SMA). Combining this with Institut de RadioAstronomie $Millim{\acute{e}}trique$ (IRAM) data, we also study spatially resolved temperature and density distributions of the molecular gas. Comparing with multi-wavelength data (optical, $H\small{I}$, UV, $H{\alpha}$), we discuss how molecular gas properties and star formation activity change when a galaxy experiences $H\small{I}$ stripping. This study suggests that ICM pressure can modify the physical and chemical properties of the molecular gas significantly even if stripping does not take place. We discuss how this affects the star formation rate and galaxy evolution in the cluster environment.

The Key role of the Bulge Compactness in Star-forming Activity in Late-type Galaxies

  • Jee, Woong-bae;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.32.2-32.2
    • /
    • 2015
  • Which mechanism governs star-formation activity in galaxies is still one of the most important, open questions in galactic astronomy. To address this issue, we investigate the specific star formation rate (sSFR) of late-type galaxies as functions of various structural parameters including the morphology, mass, radius, and mass compactness (MC). We use a sample of ~200,000 late-type galaxies with z = 0.02 ~ 0.2 from SDSS DR7 and a catalog of bulge-disk decomposition (Simard et al. 2011; Mendel et al. 2013). We find a remarkably strong correlation between bulge's MC and galaxy's sSFR, in the sense that galaxies with more compact bulge tend to be of lower sSFR. This seems counter-intuitive given that galactic sSFR is driven predominantly by disks rather than bulges and suggests that the central mass density plays a key role in recent star-forming activity. We discuss the physical cause of the new findings in terms of the bulge growth history and AGN activities.

  • PDF

OBSERVATIONS OF STAR FORMATION INDUCED BY GALAXY-GALAXY AND GALAXY-INTERGALACTIC MEDIUM INTERACTIONS WITH AKARI

  • Suzuki, T.;Kaneda, H.;Onaka, T.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.243-248
    • /
    • 2012
  • Nearby spiral galaxies M101 and M81 are considered to have undergone a galaxy-galaxy interaction. M101 has experienced HI gas infall due to the interaction. With AKARI far-infrared (IR) photometric observations, we found regions with enhanced star forming activity, which are spatially close to regions affected by the interaction. In addition, the relation between the star formation rate (SFR) and the gas content for such regions shows a significant difference from typical spiral arm regions. We discuss possible explanations for star formation processes on a kiloparsec scale and the association with interaction-triggered star formation. We also observed the compact group of galaxies Stephan's Quintet (SQ) with the AKARI Far-infrared Surveyor (FIS). The SQ shows diffuse intergalactic medium (IGM) due to multiple collisions between the member galaxies and the IGM. The intruder galaxy NGC 7318b is currently colliding with the IGM and causes a large-scale shock. The 160 micron image clearly shows the structure along the shock ridge as seen in warm molecular hydrogen line emission and X-ray emission. The far-IR emission from the shocked region comes from the luminous [CII]$158{\mu}m$ line and cold dust (~ 20 K) that coexist with molecular hydrogen gas. Survival of dust grains is indispensable to form molecular hydrogen gas within the collision age (~ 5 Myr). At the stage of the dusty IGM environment, [CII] and $H_2$ lines rather than X-ray emission are powerful cooling channels to release the collision energy.

The Kennicutt-Schmidt relation of the ram pressure stripped gas

  • Lee, Bumhyun;Chung, Aeree
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.75.1-75.1
    • /
    • 2017
  • Ram pressure due to the intracluster medium (ICM) is known to play a crucial role in removing the cool gas content of a galaxy on a short timescale, potentially driving a star forming galaxy to evolve into a red passive population. Although many HI imaging studies find clear evidence of diffuse atomic gas stripping from cluster galaxies, it is still debatable whether the ram pressure can also strip dense molecular gas. NGC 4522, a Virgo spiral, undergoing strong ram pressure stripping, is one of the few cases where extraplanar CO emission together with stripped HI gas and $H{\alpha}$ knots has been identified, providing an ideal laboratory to study the molecular gas stripping event and the extraplanar star formation activity. The aim of this work is to investigate the origin of extraplanar molecular clouds near NGC 4522 (e.g. stripped or forming in situ), and to probe a relation between the molecular gas surface density and the star formation rate (i.e. the Kennicutt-Schmidt law) at sub-kpc scale, especially in the extraplanar space, using ALMA Cycle 3 CO data and $H{\alpha}$ data of NGC 4522. We present the results from our ALMA observations, and discuss possible scenarios for the origin of extraplanar molecular clouds and to characterize the star formation activity associated with stripped gas outside the galactic disk.

  • PDF

Investigating Exoplanet Orbital Evolution Around Binary Star Systems with Mass Loss

  • Rahoma, Walid A.
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.257-264
    • /
    • 2016
  • A planet revolving around binary star system is a familiar system. Studies of these systems are important because they provide precise knowledge of planet formation and orbit evolution. In this study, a method to determine the evolution of an exoplanet revolving around a binary star system using different rates of stellar mass loss will be introduced. Using a hierarchical triple body system, in which the outer body can be moved with the center of mass of the inner binary star as a two-body problem, the long period evolution of the exoplanet orbit is determined depending on a Hamiltonian formulation. The model is simulated by numerical integrations of the Hamiltonian equations for the system over a long time. As a conclusion, the behavior of the planet orbital elements is quite affected by the rate of the mass loss from the accompanying binary star.

Star Formation and Feedback in Nuclear Rings of Barred Galaxies

  • Seo, U-Yeong;Kim, Ung-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.39.1-39.1
    • /
    • 2012
  • Nuclear rings in barred galaxies are sites of active star formation (SF). We investigate SF and its feedback effects occurring in barred galaxies, for the first time, using high-resolution grid-based hydrodynamic simulations. The gaseous medium is assumed to be infinitesimally thin, isothermal, and unmagnetized. The SF recipes include a density threshold corresponding to the Jeans condition, a SF efficiency of 1%, and momentum feedback via Type II supernova events together with stellar-wind mass loss. To investigate various environments, we vary the gas sound speed as well as the efficiency of momentum injection in the in-plane direction. We find that when the sound speed is small, the surface density of a ring becomes largely independent of the azimuthal angle, resulting in star-forming regions distributed over the whole length of the ring. When the sound speed is large, on the other hand, the ring achieves the largest density at the contact points between the dust lanes and the ring where SF occurs preferentially, leading to a clear age gradient of star clusters in the azimuthal direction. Since rings shrink with time, a radial age gradient of star clusters naturally develop regardless of sound speed, consistent with observations. SF persists over 200 Myr, with an average rate of ${\sim}1.3M_{\odot}/yr$ similar to observed values. Rings gradually become hostile to SF as they lose gas into stars and turbulent motions dominate.

  • PDF

Specific star formation rate of the MIR-selected galaxies in AKARI NEP-Wide

  • Lee, Dongseob;Shim, Hyunjin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.60.1-60.1
    • /
    • 2018
  • We investigate the $SFR-M_{\star}$ relation of the infrared luminous galaxies selected in either $11{\mu}m$ and $15{\mu}m$ from the $5.6deg^2$ of the AKARI NEP-Wide field. From the constructed multi-wavelength catalog spanning $0.3{\mu}m$ to $24{\mu}m$, we select 3,408 S11 > $50{\mu}Jy$ galaxies and 1,896 L15 > $20{\mu}Jy$ galaxies which corresponds to $L_{IR}{\sim}10^{11}L_{\odot}$ at z ~ 0.5 and 0.7 respectively. Photometric redshifts of the selected galaxies were derived using LePHARE and Coleman Extended templates. ~98% S11 selected galaxies are galaxies with (median redshift) ~ 0.4, and ~96% L15 selected galaxies are galaxies with ~ 0.6. Star formation rates and stellar mass of these galaxies were calculated using MAGPHYS which derives physical parameters with SED fitting. In the SFR-$M_{\star}$ diagram, $11{\mu}m/15{\mu}m$ selected galaxies are located in the main sequence of star-forming galaxies at z ~ 1.

  • PDF

MASS-TO-LIGHT RATIO AND THE TULLY-FISHER RELATION

  • RHEE MYUNG-HYUN
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.3
    • /
    • pp.91-117
    • /
    • 2004
  • We analyze the dependence of the mass-to-light ratio of spiral galaxies on the present star formation rate (SFR), and find that galaxies with high present star formation rates have low mass-to-light ratios, presumably as a result of the enhanced luminosity. On this basis we argue that variations in the stellar content of galaxies result in a major source of intrinsic scatter in the Tully-Fisher relation (TF relation). Ideally one should use a 'population-corrected' luminosity. We have also analyzed the relation between the (maximum) luminous mass and rotational velocity, and find it to have a small scatter. We therefore propose that the physical basis of the Tully-Fisher relation lies in a relationship between the luminous mass and rotational velocity, in combination with a 'well-behaved' relation between luminous and dark matter. This implies that the Tully-Fisher relation is a combination of two independent relations: (i) a relation between luminosity and (luminous) mass, based mainly on the star formation history in galaxies, and (ii) a relation between mass and rotation velocity, which is the outcome of the process of galaxy formation. In addition to a 'population-corrected' Tully-Fisher relation, one may also use the relation between mass and luminosity, and the relation between luminous mass and rotation velocity as distance estimators.

An Experimental and Analytical Studies on the Smoke Movement by Fire (화재시 연기거동에 관한 실험 및 해석적 연구)

  • Shin, Yi-Chul;Kim, Soo-Young;Lee, Ju-Hee;Kwon, Young-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.15-18
    • /
    • 2008
  • A study on the fire and smoke behavior on experiments and analysis through STAR-CD in using about behavior analysis of the smoke. Kerosene of 3L in using on the experimental garden of 30cm in diameter same applies to heat release rate(HRR), buoyant force by Plume can be calculated at a rate of 1m/s. The result of experiment in average of velocity were 0.29m/s, and interpreted result were 0.28m/s. Besides, it is proved by interpreted that behavior of smoke movement can be not observed in the experiment. After smoke is Plume increased, ceiling-jet in formation being descend in smoke layer will be more thick smoke layer, and then vertical wall is collapsed in formation of wall-jet being descend. It is defined that smoke layer is more thick through descending course in wall-jet and ceiling-jet.

  • PDF

Evolution of Star Formation Rate - Density Relation over Cosmic Time in a Simulated Universe: the Observed Reversal Reproduced

  • Hwang, Ho Seong;Shin, Jihye;Song, Hyunmi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.65.3-66
    • /
    • 2020
  • We use the IllustrisTNG cosmological hydrodynamical simulation to study the evolution of star formation rate (SFR)-density relation over cosmic time. We construct several samples of galaxies at different redshifts from z=2.0 to z=0.0, which have the same comoving number density. The SFR of galaxies decreases with local density at z=0.0, but its dependence on local density becomes weaker with redshift. At z≳1.0, the SFR of galaxies increases with local density (reversal of the SFR-density relation), and its dependence becomes stronger with redshift. This change of SFR-density relation with redshift still remains even when fixing the stellar masses of galaxies. The dependence of SFR on the distance to a galaxy cluster also shows a change with redshift in a way similar to the case based on local density, but the reversal happens at a higher redshift, z~1.5, in clusters. On the other hand, the molecular gas fraction always decreases with local density regardless of redshift at z=0.0-2.0 even though the dependence becomes weaker when we fix the stellar mass. Our study demonstrates that the observed reversal of the SFR-density relation at z≳1.0 can be successfully reproduced in cosmological simulations. Our results are consistent with the idea that massive, star-forming galaxies are strongly clustered at high redshifts, forming larger structures. These galaxies then consume their gas faster than those in low-density regions through frequent interactions with other galaxies, ending up being quiescent in the local universe.

  • PDF