• 제목/요약/키워드: star formation rate

검색결과 140건 처리시간 0.023초

Regulation of Star Formation Rates in Multiphase Galactic Disks: Numerical Tests of the Thermal/Dynamical Equilibrium Model

  • Kim, Chang-Goo;Kim, Woong-Tae;Ostriker, Eve C.
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.74.1-74.1
    • /
    • 2010
  • Using two-dimensional numerical hydrodynamic simulations, we investigate the regulation of star ormation rates in turbulent, multiphase, galactic gaseous disks. Our simulation domain is xisymmetric, and local in the radial direction and global in the vertical direction. Our models nclude galactic rotation, vertical stratification, self-gravity, heating and cooling, and thermal onduction. Turbulence in our models is driven by momentum feedback from supernova events ccurring in localized dense regions formed by thermal and gravitational instabilities. Self-onsistent radiative heating, representing enhanced/reduced FUV photons from the star formation, s also taken into account. Evolution of our model disks is highly dynamic, but reaches a quasi-teady state. The disks are overall in effective hydrostatic equilibrium with the midplane thermal ressure set by the vertical gravity. The star formation rate is found to be proportional pproximately linearly to the midplane thermal pressure. These results are in good agreement with the predictions of a recent theory by Ostriker, McKee, and Leroy (2010) for the thermal/dynamic equilibrium model of star formation regulation.

  • PDF

Star Formation in Nuclear Rings of Barred-Spiral Galaxies?

  • Seo, Woo-Young;Kim, Woong-Tae
    • 천문학회보
    • /
    • 제38권2호
    • /
    • pp.39.2-39.2
    • /
    • 2013
  • We use grid-based hydrodynamic simulations to study star formation history in nuclear rings of barred-spiral galaxies. In our previous study, we concentrated on bar-only galaxies without spirals, finding that the star formation rate (SFR) in a nuclear ring exhibits a strong primary burst at early time before decreasing to below 1 $M_{\odot}/yr$ at late time. The rapid decline is caused by the paucity of the gas in the bar region, due to early massive gas inflows to the nuclear ring. Since star formation in nuclear rings is observed to be sustained for about 1-2 Gyr, this requires mechanisms to supply the gas to the bar regions. In this work, we study the effect of spiral arms on the radial gas inflows and related star formation in the nuclear rings. We show that spiral arms are efficient to remove angular momentum of the gas to cause significant gas inflows to the bar region, provided the patten speed of the arms is much smaller than that of the bar. The inflowing gas is added to a nuclear ring, making the ring SFR episodic over a long period of time. The time interval of multiple bursts of star formation is a few tens to hundred million years, with the mean peak SFR of ${\sim}5M_{\odot}/yr$, consistent with observations of M100.

  • PDF

Unveiling Quenching History of Cluster Galaxies Using Phase-space Analysis

  • Rhee, Jinsu;Smith, Rory;Yi, Sukyoung K.
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.40.1-40.1
    • /
    • 2019
  • We utilize times since infall of cluster galaxies obtained from Yonsei Zoom-in Cluster Simulation (YZiCS), the cosmological hydrodynamic N-body simulations, and star formation rates from the SDSS data release 10 to study how quickly late-type galaxies are quenched in the cluster environments. In particular, we confirm that the distributions of both simulated and observed galaxies in phase-space diagrams are comparable and that each location of phase-space can provide the information of times since infall and star formation rates of cluster galaxies. Then, by limiting the location of phase-space of simulated and observed galaxies, we associate their star formation rates at z ~ 0.08 with times since infall using an abundance matching technique that employs the 10 quantiles of each probability distribution. Using a flexible quenching model covering different quenching scenarios, we find the star formation history of satellite galaxies that best reproduces the obtained relationship between time since infall and star formation rate at z ~ 0.08. Based on the derived star formation history, we constrain the quenching timescale (2 - 7 Gyr) with a clear stellar mass trend and confirm that the refined model is consistent with the "delayed-then-rapid" quenching scenario: the constant delayed phase as ~ 2.3 Gyr and the quenching efficiencies (i.e., e-folding timescale) outside and inside clusters as ~ 2 - 4 Gyr (${\propto}M_*^{-1}$) and 0.5 - 1.5 Gyr (${\propto}M_*^{-2}$), Finally, we suggest: (i) ram-pressure is the main driver of quenching of satellite galaxies for the local Universe, (ii) the quenching trend on stellar mass at z > 0.5 indicates other quenching mechanisms as the main driver.

  • PDF

High-Resolution Simulations of the Nuclear Star-Forming Ring

  • 김성수
    • 천문학회보
    • /
    • 제38권1호
    • /
    • pp.47.2-47.2
    • /
    • 2013
  • We have performed a set of high-resolution simulations of nuclear star-forming ring that results in an inward gas migration from the galactic disk. Our simulations consider gas heating/cooling, star formation, and supernova feedback. The galactic potential was obtained from a snapshot of a 6.3 million particle simulation of a galactic disk at 1 Gyr, which manifests spiral arms and pseudo-bulge. The potential was modeled with a combination of 3-dimensional spherical (for the pseudo-bulge) and 2-dimensional cylindrical (for the disk) multipole expansion technique. With such a potential model, one can easily set up various realistic 3-dimensional potential models by slightly changing the expansion coefficients. We have performed a set of simulations with a few million gas particles covering the central ~6 kpc of the disk for different pseudo-bulge sizes and non-axisymmetry, and we report the dependence of the gas inflow rate, size of the star-forming ring, and star-formation rate in the ring on the size and strength of the non-axisymmetry in the bulge.

  • PDF

Sustained Nuclear Star Formation and the Growth of a Nuclear Bulge

  • 김성수
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.142.2-142.2
    • /
    • 2011
  • Hydrodynamic simulations of gas clouds in the central hundred parsecs region of the Milky Way that is modeled with a three-dimensional bar potential are presented. Our simulations consider realistic gas cooling and heating, star formation, and supernova feedback. A ring of dense gas clouds forms as a result of $X_1-X_2$ orbit transfer, and our potential model results in a ring radius of ~200 pc, which coincides with the extraordinary reservoir of dense molecular clouds in the inner bulge, the Central Molecular Zone (CMZ). The gas clouds accumulated in the CMZ can reach high enough densities to form stars, and with an appropriate choice of simulation parameters, we successfully reproduce the observed gas mass and the star formation rate (SFR) in the CMZ, ${\sim}2{\times}10^7\;M_{\odot}$ and ${\sim}0.1\;M_{\odot}/yr$. Star formation in our simulations takes place mostly in the outermost $X_2$ orbits, and the SFR per unit surface area outside the CMZ is much lower. These facts suggest that the inner Galactic bulge may harbor a mild version of the nuclear star-forming rings seen in some external disk galaxies. We also find that the stellar population resulting from sustained star formation in the CMZ would be enlogated perpendicularly to the main bar, and this "inner bar" can migrate the gas in the CMZ further down to the central parsecs region.

  • PDF

Star formation in high redshift early-type galaxies

  • Gobat, Raphael;Daddi, Emanuele;Magdis, Georgios;Bournaud, Frederic;Sargent, Mark;Martig, Marie;Jin, Shuowen;Hwang, Ho Seong
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.40.1-40.1
    • /
    • 2017
  • Massive early-type galaxies (ETG) have been spectroscopically confirmed up to z>3 which, together with their ages and abundances at z>1.5, implies that their progenitors must have converted gas into stars on short timescales. The termination of star formation in these galaxies can occur through several channels, but they remain largely conjectural, in part due to the current lack of direct measurements of the amount of residual gas in high redshift ETGs. Here I will present constraints on the star formation rate and dust/gas content of z=1.4-2.5 ETGs. These galaxies, close to their epoch of quenching, contained more than 2 orders of magnitude more dust than their local counterparts, which suggests the presence of substantial amounts of gas and a low star formation efficiency.

  • PDF

Regulation of Star Formation in Turbulent, Multiphase Interstellar Media

  • 김창구;김웅태
    • 천문학회보
    • /
    • 제35권1호
    • /
    • pp.66.1-66.1
    • /
    • 2010
  • Using two-dimensional numerical hydrodynamic simulations, we investigate the star formation rate (SFR) in turbulent, multiphase, galactic gaseous disks. Our simulation domain is axisymmetric, and local in the radial direction and global in the vertical direction. Our models include galactic rotation, vertical density stratification, self-gravity, radiative heating and cooling, and thermal conduction, but do not include spiral-arm features. Turbulence in our models is driven by momentum feedback from supernova explosion events occurring in localized dense regions formed by thermal and gravitational instabilities. Self-consistent radiative heating, representing enhanced/reduced FUV photons from the star formation, is also taken into account. By controlling three parameters (the gas surface density, the stellar disk density, and the angular rotation rate) that characterize local galactic disks, we explore how the SFR depends on the background environmental state. We also discuss the relation between the SFR and the gas surface density found in our numerical models in comparison with observations.

  • PDF

Secular Evolution of Nuclear Bulges through Sustained Star Formation

  • 김성수;;전명원
    • 천문학회보
    • /
    • 제35권1호
    • /
    • pp.72.1-72.1
    • /
    • 2010
  • Gas materials in the inner Galactic disk continuously migrate toward the Galactic center (GC) due to interactions with the bar potential, magnetic fields, stars, and other gaseous materials. In case of the Milky Way, those in forms of molecules appear to accumulate around 200 pc from the center (the central molecular zone, CMZ) to form stars there and further inside. The bar potential in the GC is thought to be responsible for such acculmulation of molecules and subsequent star formation, which is believed to have been continous throughout the lifetime of the Galaxy. We present 3-D hydrodynamic simulations of the CMZ that consider self-gravity, radiative cooling, and supernova feedback, and discuss the efficiency and role of the star formation in that region. We find that the gas accumulated in the CMZ by a bar potential of the inner bulge effectively turns into stars, supporting the idea that the stellar cusp inside the central 200 pc is a result of the sustained star formation in the CMZ. The obtained star formation rate in the CMZ, 0.03-0.1 Msun, is consistent with the recent estimate based on the mid-infrared observations by Yusef-Zadeh et al. We discuss the secular evolution of nuclear bulges in general, based on our results.

  • PDF

막대은하의 별탄생율과 활동성 은하핵 (Star Formation Rate and AGN in Barred Galaxies)

  • 방준;안홍배
    • 한국지구과학회지
    • /
    • 제30권1호
    • /
    • pp.69-80
    • /
    • 2009
  • 본 연구에서는 SDSS DR6을 이용하여 별탄생율과 활동성 은하핵의 막대의 특성, 특히 막대의 세기에 대한 의존성을 조사하였다. 막대의 세기를 보다 잘 표현하기 위하여 막대의 길이와 축비를 이용하여 막대를 6개의 군으로 나누었다. $H{\alpha}$ 방출선 세기로부터 구한 별탄생율은 막대의 세기와 좋은 상관관계를 보였으나 활동성 은하핵은 막대와 또렷한 상관관계를 보이지 않았다. 전자의 상관관계는 막대에 의해 유발되는 가스 유입이 막대의 세기에 의존하기 때문이라고 해석되며, 활동성 은하핵이 막대의 특성과 특별한 상관관계를 보이지 않는 것은 초중량 블랙홀로 들어가는 가스의 양이 막대와 초거대 블랙홀과의 상호 작용에 의해 조절된다는 것을 의미한다. 활동성 은하핵은 주변의 밀도에 의해 영향을 받으나 별탄생율은 주변의 밀도와 무관해 보인다. 이것은 별탄생은 은하에서의 가스 밀도에 의해 결정되는 국지적인 현상인데 반해 활동성 은하핵은 질량이나 광도와 같은 은하의 특성이 밀도-광도관계로 표현되는 은하의 환경 의존성과 밀접한 관계가 있음을 암시한다.

Environmental effect on the chemical properties of star forming galaxies in the Virgo cluster

  • Chung, Jiwon;Rey, Soo-Chang;Kim, Suk;Lee, Ung
    • 천문학회보
    • /
    • 제38권2호
    • /
    • pp.46.2-46.2
    • /
    • 2013
  • We utilize Sloan Digital Sky Survey DR7 spectroscopic data of ~380 star forming galaxies in the Virgo cluster to investigate their chemical properties depending on the environments. The chemical evolution of galaxies is linked to their star formation histories as well as to the gas interchange in different environments. We derived star formation rate (SFR) and gaseous metallicity (e.g., oxygen abundance) of star forming galaxies. Combining with GALEX ultraviolet photometry and ALFALFA HI 21 cm data, we examine the relations between SFRs, metallicity, and HI deficiency of galaxies in various regions of the Virgo cluster. We also quantify the degree of ram pressure around galaxy using the ROSAT X-ray surface brightness map. We discuss environmental effects on the chemical properties and evolution of star forming galaxies.

  • PDF