• Title/Summary/Keyword: star formation

Search Result 696, Processing Time 0.025 seconds

INFRARED - X-RAY CONNECTION IN NEARBY ACTIVE GALACTIC NUCLEI; AKARI AND MAXI RESULTS

  • Isobe, Naoki;Nakagawa, Takao;Yano, Kenichi;Baba, Shunsuke;Oyabu, Shinki;Toba, Yoshiki;Ueda, Yoshihiro;Kawamuro, Taiki
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.185-187
    • /
    • 2017
  • Combining the AKARI Point Source Catalog and the 37-month Monitor of All-sky X-ray Image (MAXI) catalog, the infrared and X-ray properties of nearby active galactic nuclei were investigated. The 37-month MAXI catalog tabulates 100 nearby Seyfert galaxies, 73 of which are categorized into Seyfert I galaxies. Among these Seyfert galaxies, 69 ones were found to have an AKARI infrared counterpart. For the Seyfert I galaxies in this sample, a well-known correlation was found between the infrared and X-ray luminosities. However, the observed X-ray luminosity of the Seyfert II galaxies tends to be lower for the infrared luminosity than the Seyfert I galaxies. This suggests that the X-ray absorption is significant in the Seyfert II galaxies. The Seyfert II galaxies seem to have a bimodal distribution of the IR color between $18{\mu}m$ and $90{\mu}m$. Especially, a large fraction of the Seyfert II galaxies exhibits a redder IR color than the Seyfert I galaxies. A possible origin of the redder IR color is briefly discussed, in relation to the star formation activity in the host galaxy, and to the X-ray absorption.

OVERVIEW OF NORTH ECLIPTIC POLE DEEP MULTI-WAVELENGTH SURVEY (NEP-DEEP)

  • Matsuhara, H.;Wada, T.;Oi, N.;Takagi, T.;Nakagawa, T.;Murata, K.;Goto, T.;Oyabu, S.;Takeuchi, T.T.;Malek, K.;Solarz, A.;Ohyama, Y.;Miyaji, T.;Krumpe, M.;Lee, H.M.;Im, M.;Serjeant, S.;Pearson, C.P.;White, G.J.;Malkan, M.A.;Hanami, H.;Ishigaki, T.;Burgarella, D.;Buat, V.;Pollo, A.
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.213-217
    • /
    • 2017
  • The recent updates of the North Ecliptic Pole deep ($0.5deg^2$, NEP-Deep) multi-wavelength survey covering from X-ray to radio-wave is presented. The NEP-Deep provides us with several thousands of $15{\mu}m$ or $18{\mu}m$ selected galaxies, which is the largest sample ever made at these wavelengths. A continuous filter coverage in the mid-infrared wavelength (7, 9, 11, 15, 18, and 24 µm) is unique and vital to diagnose the contributions from starbursts and AGNs in the galaxies out to z=2. The new goal of the project is to resolve the nature of the cosmic star formation history at the violent epoch (e.g. z=1-2), and to find a clue to understand its decline from z=1 to present universe by utilizing the unique power of the multiwavelength survey. The progress in this context is briefly mentioned.

Histopathology of Red Pepper Plant Infected with Colletotrichum dematium f. sp. capsicum (탄저병균 Colletotrichum dematium f. sp. capsicum에 감염된 고추의 병태조직학적 관찰)

  • Lee Sang Bum;Chung Bong Koo;Shim Jae Sup
    • Korean Journal Plant Pathology
    • /
    • v.2 no.3
    • /
    • pp.185-192
    • /
    • 1986
  • Upon germination, a conidium was septated in accordance with number of germ tubes. The percentages of ppressorial formation were not different between the resistant cultivars (Kumchang NO. 2 and Hongilpum) and the susceptible cultivars (Haneulcho and Saegochu). Appressorial form was various such as round, elliptic or star-shapped. The maximum number of appressoria was shown at 12 hours after inoculation. By 24 hours fter inoculation, hypersensitive tiny brown lesions were observed on the leaves and fruits of the resistant cultivars. Epidermal cells under cuticle layer of the resistant Kumchang NO. 2 fruit showed severe plasmolysis, while on the susceptible cultivars, the lession was largely extended to following incubation. Subcuticular infection hyphae were profusely colonized in the disintegrated tissues. Acervuli and setae on the stromatic structure ere formed at 96 hours. The infected seed coat was not only severely collapsed, but also infection hyphae were observed on the disintegrated seed coat, resulting severe plasmolysis of nucellus and embryo.

  • PDF

Radio Observation of L1521F using HCN (J=1-0) Line (L1521F의 HCN(J=1-0) 분자선 전파 관측)

  • Sohn, Jung-Joo;Lee, Chang-Won
    • Journal of the Korean earth science society
    • /
    • v.31 no.4
    • /
    • pp.370-377
    • /
    • 2010
  • In this study, we investigated the kinematical properties of the L1521F-IRS in Taurus region using HCN (J=1-0) molecular line. The high resolution mapping has carried out by $5{\times}5$ point observations covering $3.7'{\times}3.7'$ area using a 12-m telescope of Arizona Radio Observatory in Tucsan, USA. L1521F which harbors the faint infrared L1521F-IRS, displayed a strong central concentration of integrated intensity in HCN without serious molecular depletion. It showed a symmetric kinematical structure with the opposite infall motion in either side of the central cores. It is a direct evidence of bipolar outflows in the core of L1521F.

MULTI-FREQUENCY RADIO OBSERVATIONS OF MOLECULAR CLOUDS IN THE IMMEDIATE VICINITIES OF HB3 (초신성 잔해 HB3와 인접 분자운의 다파장 전파관측)

  • KIM KWANG-TAE;LEE CHANG-WON
    • Publications of The Korean Astronomical Society
    • /
    • v.13 no.1 s.14
    • /
    • pp.149-166
    • /
    • 1998
  • The structure and environments of the molecular clouds near the SNR $HB3(G132.7\pm1.3)$ are studied. The molecular complex which is located at the southern rim of HB3 was proposed by former investigators as the one interacting with HB3. This complex region of $2^{\circ}\times2^{\circ}\;at\;l=133^{\circ}$ has been observed at $^{12}CO,\;^{13}CO,\;J=1-0\;at\;a\;1'$, resolution with the 14-m radio telescope at Taeduk Radio Astronomy Observatory. We have reached to the following four conclusions. The possibility that these molecular complex and HB3 are interacting with each other cannot be supported with any of our data. The morphologies of the two show no similarities. Neither particular features for the interaction are found in the CO lines. The hypothetical 'Molecular wall' which was expected to exist on the northwestern rim of HB3 as a cause for the noncircular morphology of HB3 is turned out to be nonexistent in CO. The molecular complex which resembles a 'bar' at a low resolution is now resolved into a U-shaped shell. It seems that the U-shape is consist of two independent components. No peculiarities, such as unseen masses or bright stars capable of forming HlI regions, are found within the U-shape region. The total mass included in the complex is estimated to be $M_{total}\;=\;2.9\~8.4\times10^5\;M_\bigodot$, which is in good agreement with previous observations within errors. Considering about 12 clumps distinguishable within the complex, the total mass implies that masses of each of clumps are on the order of $10^4\;M_\bigodot$, which makes these good objects for further studies in relation to star-formation. Especially the clumps associated with W3 are worthy for more high resolution observations for better understanding of astrophysical phenomenon ongoing in them.

  • PDF

High Mass X-ray Binary and IGOS with IGRINS

  • Chun, Moo-Young;Moon, Dae-Sik;Jeong, Ueejeong;Yu, Young Sam
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.95-95
    • /
    • 2014
  • The mass measurement of neutron stars or black holes is of fundamental importance in our understanding of the evolution of massive stars and core-collapse supernova explosions as well as some exotic physics of the extreme conditions. Despite the importance, however, it's very difficult to measure mass of these objects directly. One way to do this, if they are in binary systems, to measure their binary motions (i.e., Doppler shifts) which can give us direct information on their mass. Recently many new highly-obscured massive X-ray binaries have been discovered by new hard X-ray satellites such as INTEGRAL and NuSTAR. The new highly-obscured massive X-ray binaries are faint in the optical, but bright in the infrared with many emission lines. Based on the near-infrared spectroscopy, one can first understand the nature of stellar companions to the compact objects, determining its spectral types and luminosity classes as well as mass losses and conditions of (potential) circumstellar material. Next, spectroscopic monitoring of these objects can be used to estimate the mass of compact objects via measuring the Doppler shifts of the lines. For the former, broad-band spectroscopy is essential; for the latter, high-resolution spectroscopy is critical. Therefore, IGRINS appears to be an ideal instrument to study them. An IGRINS survey of these new highly-obscured massive X-ray binaries can give us a rare opportunity to carry out population analyses for understanding the evolution of massive binary systems and formation of compact objects and their mass ranges. In this talk, we will present a sample near-infrared high resolution spectra of HMXB, IGR J19140+0951 and discuss about its spectral feature. These spectra are obtained on 13th July, 2014 from IGRINS commissioning run at McDonald 2.7m telescope. And at final, we will introduce the upgrade plan of IGRINS Operation Software (IGOS), to gather the input from IGRINS observer.

  • PDF

Preliminary Thermal Analysis of NISS onboard NEXTSat-1

  • Lee, Dukhang;Moon, Bongkon;Park, Sung-Joon;Jeong, Woong-Seob;Suh, Jeong-Ki;Pyo, Jeonghyun;Park, Youngsik;Lee, Dae-Hee;Kim, Il-Joong;Park, Won-Kee;Ko, Kyeongyeon;Kim, Min-Gyu;Nam, Uk-Won;Park, Chan;Shin, Goo-Whan;Matsumoto, Toshio;Han, Wonyong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.108.1-108.1
    • /
    • 2014
  • Near-infrared Imaging Spectrometer for Star formation history (NISS), one of the main payloads of NEXTSat-1, is being developed by Korea Astronomy & Space Science Institute (KASI). Since NISS adopts an infrared reflecting optical system, its performance is highly sensitive to changes in system temperature. Therefore, it is important to figure out the temperature through thermal analysis and cooling tests in order to optimize the optical system design. We conducted thermal analysis of NISS for the recently updated model, and obtained steady state temperature of the optical system for two cases of satellite attitude: about 190 K for the Normal case and about 210 K for the Hot case. In this paper, we present thermal design of NISS and the preliminary thermal analysis results.

  • PDF

The Relationship Between Bright Galaxies and Their Faint Companions in Abell 2744, an Ongoing Cluster-Cluster Merger

  • Lee, Hye-Ran;Lee, Joon Hyeop;Kim, Minjin;Ree, Chang Hee;Jeong, Hyunjin;Kyeong, Jaemann;Kim, Sang Chul;Lee, Jong Chul;Ko, Jongwan;Park, Byeong-Gon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.52-52
    • /
    • 2014
  • It is widely accepted that the evolution of galaxies is accelerated in dense environments. According to recent studies, however, the evolution by direct interactions between galaxies is known to be most active in a galaxy group rather than in a galaxy cluster. In particular, the central galaxy in a group is closely related to its satellites in the properties such as morphology, color and star formation rate, because those galaxies evolve together in a small-scale environment. Currently, however, it is not yet studied well whether such conformity between bright galaxies and their faint companions remains after a galaxy group falls into a galaxy cluster. Recently, Lee et al. (2014) have found that the colors of bright galaxies show a measurable correlation with the mean colors of faint companions around them in WHL J085910.0+294957, a galaxy cluster at z = 0.3, which may be the vestige of infallen groups in the cluster. As a follow-up study, we study Abell 2744, an ongoing cluster-cluster merger at z = 0.308, using the HST Frontier Fields Survey data. The cluster members are selected based on the distributions of color, size and concentration along magnitude. The correlation in color between bright galaxies and their companions is not found in the full area of Abell 2744. However, when the area is limited to the southeastern part of the Abell 2744 image, the mean color of faint companions shows marginal dependence (> $2{\sigma}$ to Bootstrap uncertainties) on the color of their adjacent bright galaxy. We discuss the implication of these results, focusing on their dependence on local environments.

  • PDF

Chemical Differentiation of $C^{34}S$ and $N_2H^+$ in Dense Starless Cores

  • Kim, Shinyoung;Lee, Chang Won;Sohn, Jungjoo;Kim, Gwanjeong;Kim, Mi-Ryang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.75.2-75.2
    • /
    • 2014
  • CS molecule as an important tracer for studying inward motions in dense cores is known to be adsorbed onto dusts in cold (T~10K) dense cores, resulting in its significant depletion in the central region of the cores which may hamper a proper study of kinematics stage of star formation. In this study we choose five 'evolved' dense starless cores, L1544, L1552, L1689B, L694-2 and L1197, to investigate how depletion of CS molecule is significant and how the molecule differentiates depending on the evolutional status of the dense cores, by using a rare isotopomer C34S. We performed mapping observations in C34S (J=2-1) and N2H+ (J=1-0) with Nobeyama 45 m telescope, and compared $850{\mu}m$ continuum data as a reference of the density distribution of the dense cores. Our data confirm the claim that CS molecule generally depletes out in the central region in dense starless cores, while N2H+ keeps abundant as they get evolved. All of integrated intensity maps show 'semi-ring-like' depletion holes in CS, and all of abundance radial profiles show decrease toward center. The CS depletion and molecular chemical differentiation seems to depend on the evolutional status in dense cores. The evolved cores shows low abundance at both central and outer regions, implying that in the case of highly evolved cores CS freeze-out occurs over the most area of the cores.

  • PDF

Numerical Analysis of Unsteady Cavitating Vortex around Two-dimensional Wedge-shaped Submerged Body (2차원 쐐기형 몰수체의 비정상 공동 와류에 대한 수치해석)

  • Kim, Ji-Hye;Jeong, So-Won;Ahn, Byoung-Kwon;Park, Chul-Soo;Kim, Gun-Do
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.36-42
    • /
    • 2018
  • Unlike a slender body, vortices are shed off alternately in the wake of a blunt body. In the case of liquid flows, when the pressure falls below the vapor pressure, cavitation occurs in the vortex core and affects the formation of the vortex street. This phenomenon is of major importance in many practical cases because the alternate shedding of vortices creates imbalanced forces on the body. Hence, it is very important to determine the shedding frequency of cavitating vortices. In this paper, the unsteady cavitating flow around a two-dimensional wedge-shaped submerged body was simulated using the commercial code STAR-CCM+. A numerical investigation of the structure of cavitating vortices was performed for a model with an apex angle of $20^{\circ}C$. The results were validated by comparing them with experimental measurements carried out at a cavitation tunnel of Chungnam National University (CNU-CT). It was found that the shedding frequency of the vortex increased by up to 18%, which was strongly affected by the development of cavitation.