• Title/Summary/Keyword: star dual

Search Result 23, Processing Time 0.019 seconds

A bright star catalog observed by FIMS/SPEAR

  • Jo, Young-Soo;Seon, Kwang-Il;Min, Kyoung-Wook;Choi, Yeon-Ju;Lim, Tae-Ho;Lim, Yeo-Myeong;Edelstein, Jerry;Han, Wonyong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.81.1-81.1
    • /
    • 2015
  • FIMS/SPEAR is a dual-channel far-ultraviolet imaging spectrograph on board the Korean microsatellite STSAT-1, which was launched on 2003 September 27. While the instrument is optimized for the observation of diffuse emissions, it was able to observe a number of bright stars without much contamination from the diffuse background or other faint stars. In this paper, we present a catalog of the far-ultraviolet spectra for 543 stars observed by FIMS/SPEAR during its mission lifetime of a year and a half, covering over the 80% of the sky. Of these, 296 stars were also observed by the International Ultraviolet Explorer (IUE), which covered a wide spectral band including the FIMS wavelength band (1370--1710 A). The stellar spectral types involved in the catalog span from B0 to A3. We compare the new spectra with those of IUE when they are available, and discuss some examples. We also revised the effective area of FIMS that the FIMS stellar spectra are consistent with the IUE spectra.

  • PDF

The Chemical Abundances of Hypervelocity Stars in the Milky Way Disk

  • Yeom, Bum-Suk;Lee, Young Sun;Kim, Young Kwang;Han, Doo-Ri
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.77.2-77.2
    • /
    • 2016
  • We present preliminary results of the analysis of chemical abundances for seven hypervelocity star (HVS) candidates. These objects are G and K dwarfs in the Galactic disk selected from the Sloan Extension for Galactic Understanding and Exploration. Unlike other HVSs discovered thus far, their stellar orbits and kinematics suggest that they do not originate in the Galactic center or in an accretion event. These factors imply yet-unknown mechanisms that give rise to these kinematically-extreme disk stars. In order to study in detail their progenitors and possible formation mechanisms, we obtained spectra of these stars at a resolving power of R~6000, with the Dual Imaging Spectrograph at the Apache Point Observatory. We derive the abundances of chemical elements, C, Mg, Ca, Ti, Cr, Fe, and Ba from the observed spectra, using MOOG. We compare them with the ones of typical Galactic disk stars and discuss discrepancies between them to search for clues to their origin.

  • PDF

CFD Study for Wave Run-up Characteristics Around a Truncated Cylinder with Damper

  • Zhenhao Song;Bo Woo Nam
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.225-237
    • /
    • 2023
  • In this study, numerical simulations for a single fixed truncated circular cylinder in regular waves were conducted to investigate the nonlinear wave run-up under various dampers and wave period conditions. The present study used the volume of fluid (VOF) technique to capture the air-water interface. The unsteady Reynolds-averaged Navier-Stokes (URANS) equation with the k- 𝜖 turbulence model was solved using the commercial computational fluid dynamics (CFD) software STAR-CCM+. First, a systematic spatial convergence study was conducted to assess the performance and precision of the present numerical wave tank. The numerical scheme was validated by comparing the numerical results of wave run-up on a bare truncated cylinder with the experimental results, and a good agreement was achieved. Then, a series of parametric studies were carried out to examine the wave run-up time series around the truncated cylinder with single and dual dampers in terms of the first- and second-order harmonic and mean set-up components. Additionally, the local wave field and the flow velocity vectors adjacent to the cylinder were evaluated. It was confirmed that under short wave conditions, the high position of the damper led to a noticeable increase in the wave run-ups with significant changes in the first- and second-order harmonic components.