• Title/Summary/Keyword: star clusters

Search Result 227, Processing Time 0.032 seconds

Broadband Photometric Study of Two Open Clusters: Westerlund 1 and IC 1848

  • Lim, Beomdu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.83.1-83.1
    • /
    • 2014
  • Open clusters consisting of a co-spatial and coeval population with a similar chemical composition are a superb astrophysical test bed in both stellar and galactic astronomy. We introduce not only several scientific issues relating to these objects but also comprehensive studies of the two young open clusters Westerlund 1 and IC 1848 formed in extremely different star-forming conditions. Westerlund 1 is known as the most massive starburst cluster in the Galaxy. Located in the Scutum-Centaurus spiral arm, the cluster is relatively close to the Galactic Center. The apparent surface density is very high. On the other hand, IC 1848 is a core cluster within the large-scale star-forming region W5 lying in the Perseus arm. Unlike Westerlund 1, IC 1848 with a putatively low metallicity exhibits a low surface density. We present the fundamental parameters of those young clusters, such as reddening, distance, and age, obtained from the broadband photometric analysis. The stellar initial mass function (IMF) of the clusters is used to investigate the effects of the different star-forming conditions on the star formation activity. With the results of previous studies for several young open clusters, our preliminary results support a possibility that star formation activity may be affected by the environmental factors or the initial condition of natal clouds. In addition, we shortly discuss the age scale and spread of pre-main sequence stars to understand the formation processes of star clusters.

  • PDF

Bar Formation and Enhancement of Star Formation in Disk Galaxies in Interacting Clusters

  • Yoon, Yongmin;Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.31.1-31.1
    • /
    • 2020
  • A merger or interaction between galaxy clusters is one of the most violent events in the universe. Thus, an interacting cluster is an optimum laboratory to understand how galaxy properties are influenced by a drastic change of the large-scale environment. Here, we present the observational evidence that bars in disk galaxies can form by cluster-cluster interaction and the bar formation is associated with star-formation enhancement. We investigated 105 galaxy clusters at 0.015

  • PDF

A GMOS/IFU Spectroscopic Mapping of Jellyfish Galaxies in Extremely Massive Galaxy Clusters

  • Lee, Jeong Hwan;Lee, Myung Gyoon;Kang, Jisu;Cho, Brian S.;Mun, Jae Yeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.32.3-33
    • /
    • 2020
  • Jellyfish galaxies show spectacular features such as star-forming knots and tails due to strong ram-pressure stripping in galaxy clusters. Thus, jellyfish galaxies are very useful targets to investigate the effects of ram-pressure stripping on the star formation activity in galaxies. Integral field spectroscopy (IFS) studies are the best way to study star formation in jellyfish galaxies, but they have been limited to those in low-mass galaxy clusters until now. In this study, we present a Gemini GMOS/IFU study of three jellyfish galaxies in very massive clusters (M_200 > 10^15 Mo). The host clusters (Abell 2744, MACSJ0916.1-0023, and MACSJ1752.0+4440) are X-ray luminous and dynamically unstable, suggesting that ram-pressure stripping in these clusters is much stronger than in low-mass clusters. We present preliminary results of star formation rates, kinematics, dynamical states, and ionization mechanisms of our sample galaxies and discuss how ram-pressure stripping relates with the star formation activity of jellyfish galaxies in massive clusters.

  • PDF

Mapping the Star Formation Activity of Five Jellyfish Galaxies in Massive Galaxy Clusters with GMOS/IFU

  • Lee, Jeong Hwan;Lee, Myung Gyoon;Mun, Jae Yeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.43.2-43.2
    • /
    • 2021
  • Ram-pressure stripping (RPS) is known as the main driver of quenching the star formation (SF) activity in cluster galaxies. However, galaxies undergoing RPS in galaxy clusters often show blue star-forming knots in their disturbed disks and tails. The existence of these "jellyfish galaxies" implies that RPS can temporarily boost the SF activity of cluster galaxies. Thus, jellyfish galaxies are very unique and interesting targets to study the influence of RPS on their SF activity, in particular with integral field spectroscopy (IFS). While there have been many IFS studies of jellyfish galaxies in low-mass clusters (e.g., the GASP survey), IFS studies of those in massive clusters have been lacking. We present an IFS study of five jellyfish galaxies in massive clusters at intermediate redshifts using the Gemini GMOS/IFU. Their star formation rates (SFRs) are estimated to be up to 15 Mo/yr in the tails and 50 Mo/yr in the disks. These SFRs are by a factor of 10 higher than those of star-forming galaxies on the main sequence in the M*-SFR relation at similar redshifts. Our results suggest that the SF activity of jellyfish galaxies tends to be more enhanced in massive clusters than in low-mass clusters. This implies that strong RPS in massive clusters can trigger strong starbursts.

  • PDF

BLUE STRAGGLERS, CATACLYSMIC VARIABLES, X-RAY BINARIES, AND MILLISECOND PULSARS IN GLOBULAR CLUSTERS

  • Lee, Hyung-Mok
    • Journal of The Korean Astronomical Society
    • /
    • v.25 no.1
    • /
    • pp.47-64
    • /
    • 1992
  • Cores of globular clusters are an ideal place for close encounters between stars. The outcome of tidal capture can be stellar mergers, close binaries between normal stars (W UMa type), cataclysmic variables composed of white dwarf and normal star pairs, or low-mass X-ray binaries consisting of a neutron star and a normal star pairs. Stellar mergers can be the origin of blue stragglers in dense globular clusters although they are hard to observe. Low mass X-ray binaries would eventually become binary pulsars with short pulse periods after the neutron stars accrete sufficient amount of matter from the companion. However, large number of recently discovered, isolated millisecond pulsars (as opposed to binary pulsars) in globular clusters may imply that they do not have to gain angular speeds during the X-ray binary phase. We propose that these isolated millisecond pulsars may have formed through the disruptive encounters, which lead to the formation of accretion disk without Roche lobe filling companion, between a neutron star and a main-sequence star. Based on recently developed multicomponent models for the dynamical evolution of globular clusters, we compute the expected numbers of various systems formed by tidal capture as a function of time.

  • PDF

BS2fit: A NEW TOOL FOR ANALYSING SPECTRA AND COLOR-MAGNITUDE DIAGRAMS OF GALAXIES AND CLUSTERS

  • LI, ZHONGMU;MAO, CAIYAN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.539-541
    • /
    • 2015
  • We present a new tool for studying the spectral energy distributions (SEDs) and color-magnitude diagrams (CMDs) of galaxies and star clusters, BINARY STAR TO FIT (BS2fit). A key feature of this tool is that it takes the effects of binaries, stellar rotation and star formation history into account. It can be used to determine many parameters, including distance, extinction, binary fraction, rotational star fraction, and star formation history. Because more factors are included than in previous tools, BS2fit can potentially give new insight into the properties of galaxies and clusters. One can contact the authors for cooperation and helps via.

Top-Heavy Initial Mass Function of Star Clusters near the Galactic Centre

  • Park, So-Myoung;Goodwin, Simon P.;Kim, Sungsoo S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.51.2-51.2
    • /
    • 2018
  • Star clusters are important in understanding star formation. In star-forming regions, the number of stars with mass forms with an initial mass function (IMF), i.e. Chabrier, Salpeter, Kroupa, etc. In our simulations, initially sub-virial fractal star clusters evolve to become surviving sub-regions in strong tidal fields. We investigate the slope of the mass function (MF) of these sub-regions with time near the Galactic centre (GC). These sub-regions would appear to have a top-heavy IMF at ~ 2 Myr. Therefore, although our star-forming region near the GC has a normal IMF, stars in surviving 'clusters' can have a top-heavy 'IMF' due to the violent environment.

  • PDF

What Controls Star Formation In Nuclear Rings of Barred Galaxies?

  • Seo, U-Yeong;Kim, Ung-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.31.2-31.2
    • /
    • 2013
  • We use grid-based hydrodynamic simulations to study star formation in nuclear rings in barred galaxies. The gaseous medium is assumed to be infinitesimally thin, isothermal, and unmagnetized. To investigate various situations, we vary the total gas content in the bar regions and the bar growth time. We find that star formation rate (SFR) in a nuclear ring is determined by the mass inflow rate to the ring rather than the total gas mass in the ring. The SFR shows a strong primary burst and weak secondary bursts at early time, and declines to small values at late time. The primary burst is caused by the rapid gas infall to the ring due to the bar growth, with its duration and peak depending on the bar growth time. The secondary bursts result from re-infall of the ejected gas by star formation feedback of the primary burst. When the SFR is low, ages of young star clusters exhibit an azimuthal gradient along the ring since star formation takes place mostly near the contact points between the dust lanes and the nuclear ring. When the SFR is large, on the other hand, star formation is widely distributed throughout the whole length of the ring, with no apparent age gradient of star clusters. Regardless of SFR, star clusters have a positive radial age gradient, with younger clusters located closer to the ring, since the ring shrinks in size over time.

  • PDF

THE STAR CLUSTER SYSTEM OF THE MERGING GALAXY NGC 1487

  • Lee, Hye-Jin;Lee, Myung-Gyoon
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.3
    • /
    • pp.345-355
    • /
    • 2005
  • We present a photometric study of the star cluster system in the merging galaxy NGC 1487, based on the BI photometry obtained from the F450W and F814W images in the HST /WFPC2 archive data. We have found about 560 star cluster candidates in NGC 1487, using the morphological parameters of the objects. We have investigated several photometric characteristics of the clusters: color-magnitude diagrams (CMDs), color distribution, spatial distribution, age, size and luminosity function. The CMD of the bright clusters with 18.5 < B < 24 mag in NGC 1487 shows three major populations of clusters: a blue cluster population with $(B-I){\le}0.45$, an intermediate-color cluster population with $0.45<(B-I){\le}1.55$, and a red cluster population with (B - I) > 1.55. The intermediate-color population is the most dominant among the three populations. The brightest clusters in the blue and intermediate- color populations are as bright as $B{\approx}18mag$ ($M_B{\approx}-12mag$), which are three magnitudes brighter than those in the red population. The blue and intermediate-color clusters are strongly concentrated on the bright condensations, while the red clusters are relatively more scattered over the galaxy. The CMD of these clusters is found to be remarkably similar to that of the clusters in the famous interacting system M51. From this we suggest that the intermediate-color clusters were, probably, formed during the merging process which occurred about 500 Myrs ago.

$K_s$-band luminosity evolution of AGB populations based on star clusters in the Large Magellanic Cloud

  • Ko, You-Kyung;Lee, Myung-Gyoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.56.2-56.2
    • /
    • 2012
  • We present a study of the asymptotic giant branch (AGB) contribution to the total Ks band luminosity of star clusters in the Large Magellanic Cloud (LMC) as a function of age. AGB stars, a representative intermediate-age population, are a strong source of NIR to MIR emission so that they are a critical component for understanding the near-to-mid infrared observation of galaxies. Current calibration of IR emission in evolutionary population synthesis (EPS) models for galaxies is mainly based on a small number of LMC star clusters. However, each LMC star cluster with intermediate age contains only a few AGB stars so that it suffers from a stochastic effect. Therefore a large number of them are needed for solid calibration of the EPS models. We study physical properties of a large number of LMC star clusters to estimate the Ks band luminosity fraction of AGB stars in star clusters as a function of age. We discuss the stochastic effect in calibrating models, and the importance of this calibration for studying the evolution of not only nearby galaxies but also of high-z galaxies.

  • PDF