• Title/Summary/Keyword: stand-alone microgrid

Search Result 38, Processing Time 0.02 seconds

Functional Properties of Stand-alone Microgrid EMS Application (에너지 자립섬 EMS 어플리케이션의 기능적 특성)

  • Lee, Ha-Lim;Chun, Yeong-Han;Chae, Wookyu;Park, Jungsung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.1
    • /
    • pp.115-119
    • /
    • 2016
  • For many past years, research in the operation of stand-alone Microgrid, which provides electric power generated from renewable energy sources and energy storage system instead of diesel generators, has been a major issue in order to prepare the exhaustion of fossil fuel and to protect environment, in island grids. Samso Island, known as the world's first stand-alone Microgrid in Denmark, is connected to the mainland grid through AC system, which has different technical conditions with Korea's isolated power system. Korea's first stand-alone Microgrid has been built in Ga-sa island, Chun-la-nam-do, based on Energy Management System (EMS) operation, and other islands are under construction to follow the next step. These stand-alone Microgrid's has large capacity of Battery Energy Storage System (BESS) and the proportion of the renewable energy sources are large, which makes it necessary to use a Microgrid-Energy Management System (MG-EMS) to operate the grid effectively and economically. However, since the main subject of MG-EMS is different from EMS, specific characteristics and functions must be different as well. In this paper, the necessary characteristics and functions are explained for a general MG-EMS compared to a large power system EMS.

Analysis of Voltage Control of Stand-Alone Microgrid for High Quality Power Supply (고품질 전력공급을 위한 독립형 마이크로그리드의 전압제어 해석)

  • Jo, Jongmin;Lee, Hakju;Shin, Chang-hoon;Cha, Hanju
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.253-257
    • /
    • 2016
  • This paper analyzes voltage control method in order to supply high-quality power for stand-alone microgrid. Stand-alone microgrid is composed of battery bank, stand-alone PCS and controllable loads. The main role of stand-alone PCS is to supply high-quality power to loads as main source by using stable voltage method regardless of load conditions. In particularly, output voltage of stand-alone PCS gets severely unbalanced voltage under unbalanced loads. Fundamental positive and negative sequences are transformed by two coordinates transformation which are rotated in each opposite direction, respectively. Each fundamental d-q voltage is regulated by each fundamental PI control. In addition, low-order harmonics are compensated through resonant controllers. Performance of stand-alone microgrid is tested for feasibility, and it is verified that output voltage of THD is improved to 1% from 2.2% under 50 kW balanced load, and is improved to 1.1% from 2.6% under 50 kW unbalanced load.

Real-time Operation Analysis for Stand-alone Microgrid using RTDS (RTDS를 이용한 독립형 마이크로그리드의 실시간 동작 분석)

  • Lee, Yoon-Seok;Han, Byung-Moon;Won, Dong-Jun;Lee, Hak Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1393-1401
    • /
    • 2014
  • In this paper the operational characteristics of stand-alone microgrid was analyzed using RTDS simulation models. The accuracy of developed simulation models were verified by comparing with the analysis results using the PSCAD/EMTDC simulation models. The proper scenarios and operation algorithms were developed and analyzed in accordance with various situations that can occur in the actual system, so as to establish operation scheme for the stand-alone microgrid system. The developed simulation models can be effectively utilized to design a newly installed stand-alone microgrid and to develop various operation scenarios for stand-alone microgrid. And these models can be applied for analyzing the transient phenomena due to system fault so that system protection can be properly designed.

Design and Implementation of the Script-based EMS for Flexible Management of Stand-alone Microgrid (독립형 마이크로그리드의 유연한 운영을 위한 스크립트 기반 EMS 설계 및 구현)

  • Kim, Joon-Hyoung;Jung, Sung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.10
    • /
    • pp.1231-1240
    • /
    • 2015
  • Nowadays, in islands where electricity should be provided autonomously, stand-alone microgrid technologies using renewable energy such as sunlight generation and wind power generation come into wide use. The microgrid electricity generation using renewable energy is greatly affected by the natural environment of a site. In order to maintain stable electricity supply for fluctuating electricity generation due to natural environment, the energy management via EMS is positively necessary. In existing stand-alone microgrid EMS, system operation logic is not changeable flexibly because compiled or builded codes are released into the EMS of a site, respectively. In this paper, we designed a flexible operating script-based microgrid EMS Framework for various sites and applied it to some island sites. We could confirm its usability.

Voltage and Frequency Control Method Using Battery Energy Storage System for a Stand-alone Microgrid (배터리 에너지 저장장치를 이용한 독립형 마이크로그리드의 전압 및 주파수 제어)

  • Kim, Sang-Hyuk;Chung, Il-Yop;Lee, Hak-Joo;Chae, Woo-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.8
    • /
    • pp.1168-1179
    • /
    • 2015
  • This paper presents voltage and frequency control methods for a stand-alone Gasa Island Microgrid in South Korea that can be fully energized by renewable energy resources such as photovoltaic systems and wind turbines. To mitigate the variations of the output of renewable energy resources and supply more reliable electricity to customers, battery energy storage systems (BESSs) are employed in the stand-alone microgrid. The coordination between BESSs and pre-existing diesel generators is an important issue to manage the microgrid more securely. This paper presents voltage and frequency control schemes considering the coordination of BESSs and DGs. The effectiveness for the operating method is validated via simulation studies.

Dynamic Economic Dispatch and Control of a Stand-alone Microgrid in DongAo Island

  • Ma, Yiwei;Yang, Ping;Guo, Hongxia;Wang, Yuewu
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1432-1440
    • /
    • 2015
  • A dynamic economic dispatch and control method is proposed to minimize the overall generating cost for a stand-alone microgrid in DongAo Island, which is integrated with wind turbine generator, solar PV, diesel generator, battery storage, the seawater desalination system and the conventional loads. A new dispatching strategy is presented based on the ranking of component generation costs and two different control modes, in which diesel generator and battery storage alternate to act as the master power source to follow system power fluctuation. The optimal models and GA-based optimization process are given to minimize the overall system generating cost subject to the corresponding constraints and the proposed dispatch strategy. The effectiveness of the proposed method is verified in the stand-alone microgrid in DongAo Island, and the results provide a feasible theoretical and technical basis for optimal energy management and operation control of stand-alone microgrid.

NeW Output Voltage Control Scheme Based on SoC Variation of BESS Applicable for Stand-alone DC Microgrid (독립형 DC 마이크로그리드에 적용 가능한 BESS의 SoC를 기반으로 한 새로운 출력전압 제어기법)

  • Yu, Seung-Yeong;Kim, Hyun-Jun;Han, Byung-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1176-1185
    • /
    • 2016
  • This paper proposes a new output voltage control scheme based on the SoC variation of the battery energy storage system (BESS) applicable for the stand-alone DC microgrid. The proposed control scheme provides relatively lower variation of the DC grid voltage than the conventional droop method. The performance of proposed control scheme was verified through computer simulations for a typical stand-alone DC microgrid which consists of BESS, photo-voltaic (PV) panel, engine generator (EG), and DC load. A scaled hardware prototype for the stand-alone DC microgrid with DSP controller was set up in the lab, and the proposed control algorithm was installed in the DSP controller. The test results were compared with the simulation results for performance verification and actual system implementation.

Design and Dynamic Performance Analysis of a Stand-alone Microgrid - A Case Study of Gasa Island, South Korea

  • Husein, Munir;Hau, Vu Ba;Chung, Il-Yop;Chae, Woo-Kyu;Lee, Hak-Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1777-1788
    • /
    • 2017
  • This paper presents the design and dynamic analysis of a stand-alone microgrid with high penetration of renewable energy. The optimal sizing of various components in the microgrid is obtained considering two objectives: minimization of levelized cost of energy (LCOE) and maximization of renewable energy penetration. Integrating high renewable energy in stand-alone microgrid requires special considerations to assure stable dynamic performance, we therefore develop voltage and frequency control method by coordinating Battery Energy Storage System (BESS) and diesel generators. This approach was applied to the design and development of Gasa Island microgrid in South Korea. The microgrid consists of photovoltaic panels, wind turbines, lithium-ion batteries and diesel generators. The dynamic performance of the microgrid during different load and weather variations is verified by simulation studies. Results from the real microgrid were then presented and discussed. Our approach to the design and control of microgrid will offer some lessons in future microgrid design.

Stability Improvement of Battery Energy Storage System considering Synchronous Inductance Effect of Diesel Generator

  • Jo, Jongmin;An, Hyunsung;Chun, Kwan-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2254-2261
    • /
    • 2018
  • This paper analyzes stability of current control in respect of four cases of battery energy storage system (BESS) in a stand-alone microgrid. The stand-alone microgrid is composed of BESS, diesel generator and controllable loads, where all of them have a rated power of 50kW. The four cases are considered as following: 1) BESS with a stiff grid 2) BESS with the diesel generator 3) BESS with passive damping + diesel generator 4) BESS with active damping + diesel generator, and their stabilities are analyzed in the frequency domain and discrete time domain. The comparative analysis for four cases are verified through simulation and experiments through demonstration site of the stand-alone microgrid, where the DC link is connected to a 115kW battery bank composed of 48 lead-acid batteries (400AH/12V). Experimental results show a good agreement with the analysis.

Seamless Transfer Operation Between Grid-connected and Stand-Alone Mode in the Three-phase Inverter (3상 인버터의 계통연계 및 독립운전모드 전환 연구)

  • Lee, Wujong;Jo, Hyunsik;Lee, Hak Ju;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.201-207
    • /
    • 2013
  • This paper propose seamless transfer operation between grid-connected and stand-alone mode in the three-phase inverter for microgrid. The inverter operates grid-connected mode and stand-alone mode. Grid-connected mode is the inverter connected to grid and stand-alone mode is to deliver energy to the load from inverter at grid fault. When conversion from gird-connected to stand-alone mode, the inverter changes current control to voltage control. When grid restored, the inverter system is conversion from stand-alone to grid-connected mode. In this case, load phase and grid phase are different. Therefore, synchronization is essential. Thus Seamless transfer operation stand-alone to grid-connected mode. In this paper, propose sealmless transfer operation between grid-connceted and stand-alome mode, and this method is verified through simulation and experiment.