• Title/Summary/Keyword: stand growth model

Search Result 66, Processing Time 0.027 seconds

Development of Site Index Model for Cryptomeria japonica Stands by the Current Growth Characteristics in South Korea (현실임분 생장특성을 반영한 삼나무 지위지수 추정 모델 개발)

  • Kim, Hyun-Soo;Jung, Su-Young;Lee, Kwang-Soo;Lee, Sang-Hyun
    • Journal of Environmental Science International
    • /
    • v.31 no.9
    • /
    • pp.793-801
    • /
    • 2022
  • This study was carried out to provide basic data for logical forest management by developing a site index curve reflecting the current growth characteristics of Cryptomeria japonica stands in Korea. The height growth model was developed using the Chapman-Richards, Schumacher, Gompertz, and Weibull algebraic difference equations, which are widely used in growth estimation, for data collected from 119 plots through the 7th National Forest Inventory and stand survey. The Chapman-Richards equation, with the highest model fit, was selected as the best equation for the height growth model, and a site index curve was developed using the guide curve method. To compare the developed site index curve with that on the yield table, paired T-tests with a significance level of 5% were performed. The results indicated that there were no significant differences between the site index curve values at all ages, and the p-value was smaller after the reference age than before. Therefore, the site index curve developed through this study reflects the characteristics of the changing growth environment of C. japonica stands and can be used in accordance with the site index curve on the current yield table. Thus, this information can be considered valuable as basic data for reasonable forest management.

Development of Diameter and Basal Area Growth Models for Larix leptolepis in Eastern Mountain Areas, Jeollabuk-do (전라북도 동부 산악지역 낙엽송의 직경 및 흉고단면적 생장모델 개발)

  • Kim, Hyun;Jo, Young-Jin;Lee, Sang-Hyun
    • Journal of agriculture & life science
    • /
    • v.45 no.5
    • /
    • pp.25-31
    • /
    • 2011
  • This study was conducted to develop the growth model for diameter at breast height (DBH) and basal area (BA) of Larix leptolepis stands grown in eastern mountain areas, Jeollabuk-do and to enhance the precision of the models by adding regional and climatal factors, such as altitude, mean annual rainfall, and mean annual temperature. In results, it was analyzed that Schumacher polymorphic equation might be the best model to estimate DBH and BA growth. In case of the DBH growth model, precision was improved by adding altitude and mean annual rainfall. Moreover, in case of the BA growth model, precision was improved by adding mean annual rainfall. Meanwhile, it would be necessary for more precise model to add various factors, such as stand density, mortality, thinning ratio, and edaphic status along with regional and climatal factors.

Development of Stand Yield Table Based on Current Growth Characteristics of Chamaecyparis obtusa Stands (현실임분 생장특성에 의한 편백 임분수확표 개발)

  • Jung, Su Young;Lee, Kwang Soo;Lee, Ho Sang;Ji Bae, Eun;Park, Jun Hyung;Ko, Chi-Ung
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.4
    • /
    • pp.477-483
    • /
    • 2020
  • We constructed a stand yield table for Chamaecyparis obtusa based on data from an actual forest. The previous stand yield table had a number of disadvantages because it was based on actual forest information. In the present study we used data from more than 200 sampling plots in a stand of Chamaecyparis obtusa. The analysis included theestimation, recovery and prediction of the distribution of values for diameter at breast height (DBH), and the result is a valuable process for the preparation ofstand yield tables. The DBH distribution model uses a Weibull function, and the site index (base age: 30 years), the standard for assessing forest productivity, was derived using the Chapman-Richards formula. Several estimation formulas for the preparation of the stand yield table were considered for the fitness index, and the optimal formula was chosen. The analysis shows that the site index is in the range of 10 to 18 in the Chamaecyparis obtusa stand. The estimated stand volume of each sample plot was found to have an accuracy of 62%. According to the residuals analysis, the stands showed even distribution around zero, which indicates that the results are useful in the field. Comparing the table constructed in this study to the existing stand yield table, we found that our table yielded comparatively higher values for growth. This is probably because the existing analysis data used a small amount of research data that did not properly reflect. We hope that the stand yield table of Chamaecyparis obtusa, a representative species of southern regions, will be widely used for forest management. As these forests stabilize and growth progresses, we plan to construct an additional yield table applicable to the production of developed stands.

Assessment and Prediction of Stand Yield in Cryptomeria japonica Stands (삼나무 임분수확량 평가 및 예측)

  • Son, Yeong Mo;Kang, Jin Taek;Hwang, Jeong Sun;Park, Hyun;Lee, Kang Su
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.3
    • /
    • pp.421-426
    • /
    • 2015
  • The objective of this paper is to look into the growth of Cryptomeria japonica stand in South Korea along with the evaluation on their yields, followed by their carbon stocks and removals. A total of 106 sample plots were selected from Jeonnam, Gyeongnam, and Jeju, where the groups of standard are grown. We only used 92 plots data except outlier. As part of the analysis, the Weibull diameter distribution was applied. In order to estimate the diameter distribution, the growth estimation equation for each of the growth factors including the height, the diameter at breast height, and the basal area was drafted out and the verification for each equation was examined. The site index for figuring out the forest productivity of Cryptomeria japonica stand for each district was also developed as a Schumacher model and 30yr was used as a reference age for the estimation of the site index. It was found that the site index for Cryptomeria japonica stand in South Korea ranges from 10 to 16 and this result was used as a standard for developing the stand yield table. According to the site 14 in the stand yield table, the mean annual increment (MAI) of the Cryptomeria japonica reaches $7.6m^3/ha$ on its 25yr and its growing stock is estimated to be at $190.1m^3/ha$. This volume is about $20m^3$ as high as that of the Chamaesyparis obtusa. Furthermore, the annual carbon absorptions for a Cryptomeria japonica stand reached the peak at 25yr, which is 2.14 tC/ha/yr, $7.83tCO_2/ha/yr$. When compared to the other conifers, this rate is slightly higher than that of a Chamaecyparis obtusa ($7.5tCO_2/ha/yr$) but lower than that of the Pinus koraiensis ($10.4tCO_2/ha/yr$) and Larix kaempferi ($11.2tCO_2/ha/yr$). With such research result as a base, it is necessary to come up with the ways to enhance the utilization of Cryptomeria japonica as timbers, besides making use of their growth data.

Analyzing the Effect of Management Strategies on Gum Talha Yield from Acacia Seyal, South Kordofan, Sudan

  • Mohammed, M.H.;Roehle, H.
    • Journal of Forest and Environmental Science
    • /
    • v.27 no.3
    • /
    • pp.135-141
    • /
    • 2011
  • The present study was carried out from September 2007 to February 2008 in Umfakarin natural forest reserve, South Kordofan, Sudan. The objective was to analyze the effect of different management strategies on yield of gum talha from Acacia seyal. A total of 493 single target trees were selected, based on their diameters, and assigned to tapping treatments in three different stand densities (making a total of nine treatments per stand density). The treatments are as follows: tapping date with three levels (first of October, 15 October and first of November) and two levels of local tapping tools (sonki, and makmak). Untapped trees were used as control. The first picking of gum was started fifteen days after tapping while the subsequent pickings were done in intervals of fifteen days. Yield per tree throughout the season was obtained by summing up the gum yield from all pickings. Yield throughout the season (from first to the last picking) were analyzed. General linear model (GLM) was used to test the effect of different tapping treatments on the yield of gum talha. Post hoc test after analysis of variance (ANOVA) based on Scheffe test was performed to examine the differences in gum yield as a result of different management strategies. The results showed that tapping has a significant influence on gum yield. Analysis of pick-to-pick yield indicated that only three treatments in dense stand density showed a decreasing pattern while the rest of treatments either have constant or unclear patterns. The results of the present study were based on a single season data and that may underscore the real effect of Acacia seyal stands' management strategies on gum talha yield. Conducting gum yield experiments in permanent trial plots are highly recommended in order to analyze gum yield of seasonal time series.

A Growth and Yield Model for Predicting Both Forest Stumpage and Mill Side Manufactured Product Yields and Economics

  • Schultz Emily B.;Matney Thomas G.
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.305-309
    • /
    • 2006
  • This paper presents and illustrates the application of a growth and yield model that supports both forest and mill side volume and value estimates. Traditional forest stand growth and yield models represent the forest landowner view of yield and economics. Predicted yields are estimates of what one would expect from a procurement cruise, and current stumpage prices are applied to investigate optimum management strategies. Optimum management regimes and rotation ages obtained from the forest side view are unlikely to be economically optimal when viewed from the mill side. The actual distribution of recoverable manufactured product and its value are highly dependent on mill technologies and configurations. Overcoming this limitation of growth and yield computer models necessitates the ability to predict and price the expected manufactured distribution of lumber, lineal meters of veneer, and tonnes of air dried pulp fiber yield. With these embedded models, users of the yield simulator can evaluate the economics of possible/feasible management regimes from both the forest and mill business sides. The simulator is a forest side model that has been modified to produce estimates of manufactured product yields by embedding models for 1) pulpwood chip size class distribution and pulp yield for any kappa number (Schultz and Matney, 2002), 2) a lumber yield and pricing model based on the Best Opening Face model developed by the USDA Forest Service Forest Products Laboratory (Lewis, 1985a and Lewis, 1985b), and 3) a lineal meter veneer model derived from peeler block tests. While the model is strictly applicable to planted loblolly pine (Pinus taeda L.) on cutover site-prepared land in the United States (US) Gulf South, the model and computer program are adaptable to any region and forest type.

  • PDF

Development of Diameter Growth Models by Thinning Intensity of Planted Quercus glauca Thunb. Stands

  • Jung, Su Young;Lee, Kwang Soo;Kim, Hyun Soo
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.6
    • /
    • pp.629-638
    • /
    • 2021
  • Background and objective: This study was conducted to develop diameter growth models for thinned Quercus glauca Thunb. (QGT) stands to inform production goals for treatment and provide the information necessary for the systematic management of this stands. Methods: This study was conducted on QGT stands, of which initial thinning was completed in 2013 to develop a treatment system. To analyze the tree growth and trait response for each thinning treatment, forestry surveys were conducted in 2014 and 2021, and a one-way analysis of variance (ANOVA) was executed. In addition, non-linear least squares regression of the PROC NLIN procedure was used to develop an optimal diameter growth model. Results: Based on growth and trait analyses, the height and height-to-diameter (H/D) ratio were not different according to treatment plot (p > .05). For the diameter of basal height (DBH), the heavy thinning (HT) treatment plot was significantly larger than the control plot (p < .05). As a result of the development of diameter growth models by treatment plot, the mean squared error (MSE) of the Gompertz polymorphic equation (control: 2.2381, light thinning: 0.8478, and heavy thinning: 0.8679) was the lowest in all treatment plots, and the Shapiro-Wilk statistic was found to follow a normal distribution (p > .95), so it was selected as an equation fit for the diameter growth model. Conclusion: The findings of this study provide basic data for the systematic management of Quercus glauca Thunb. stands. It is necessary to construct permanent sample plots (PSP) that consider stand status, location conditions, and climatic environments.

Selection of Growth projection Intervals for Improving Parameter Estimation of Stand Growth Model (임분(林分) 생장(生長) 모델의 모수(母數) 추정(推定) 능력(能力) 향상(向上)을 위(爲)한 생장(生長) 측정간격(測定間隔)의 선택(選擇))

  • Lee, Sang Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.1
    • /
    • pp.40-49
    • /
    • 1998
  • This study aimed to provide a strategy for selecting an adequate combination of growth intervals(i.e. times between age $T_1$ and age $T_2$) to be used to improve the reality of the growth equation through obtaining better precision of parameter estimates. Variety of growth functions were fitted to the data and one equation which best fitted the data was chosen for the analysis. A modified Schumacher projection equation, selected as a best equation, that included dummy variables representing locality as a predictor variable was fitted for basal area and height equations with nonoverlapping growth interval and all possible growth interval data sets of Douglas-fir(Pseudotsuga menziesii Mirb.Franco). The data were measured in all parts of the South Island of New Zealand. It was found that the precision of parameter estimates was increased in both basal area and height equations by using data set which contained a range of measurement intervals from short to long term.

  • PDF

Estimating Stand Volume Pinus densiflora Forest Based on Climate Change Scenario in Korea (미래 기후변화 시나리오에 따른 우리나라 소나무 임분의 재적 추정)

  • Kim, Moonil;Lee, Woo-Kyun;Guishan, Cui;Nam, Kijun;Yu, Hangnan;Choi, Sol-E;Kim, Chang-Gil;Gwon, Tae-Seong
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.1
    • /
    • pp.105-112
    • /
    • 2014
  • The main purpose of this study is to measure spatio-temporal variation of forest tree volume based on the RCP(Representative Concentration Pathway) 8.5 scenario, targeting on Pinus densiflora forests which is the main tree species in South Korea. To estimate nationwide scale, $5^{th}$ forest type map and National Forest Inventory data were used. Also, to reflect the impact of change in place and climate on growth of forest trees, growth model reflecting the climate and topography features were applied. The result of the model validation, which compared the result of the model with the forest statistics of different cities and provinces, showed a high suitability. Considering the continuous climate change, volume of Pinus densiflora forest is predicted to increase from $131m^3/ha$ at present to $212.42m^3/ha$ in the year of 2050. If the climate maintains as the present, volume is predicted to increase to $221.92m^3/ha$. With the climate change, it is predicted that most of the region, except for some of the alpine region, will have a decrease in growth rate of Pinus densiflora forest. The growth rate of Pinus densiflora forest will have a greater decline, especially in the coastal area and the southern area. With the result of this study, it will be possible to quantify the effect of climate change on the growth of Pinus densiflora forest according to spatio-temporal is possible. The result of the study can be useful in establishing the forest management practices, considering the adaptation of climate change.

Prediction of Stand Volume and Carbon Stock for Quercus variabilis Using Weibull Distribution Model (Weibull 분포 모형을 이용한 굴참나무 임분 재적 및 탄소저장량 추정)

  • Son, Yeong Mo;Pyo, Jung Kee;Kim, So Won;Lee, Kyeong Hak
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.4
    • /
    • pp.599-605
    • /
    • 2012
  • The purpose of this study is to estimate diameter distribution, volume per hectare, and carbon stock for Quercus variabilis stand. 354 Quercus variabilis stands were selected on the basis of age and structure, the data and samples for these stands are collected. For the prediction of diameter distribution, Weibull model was applied and for the estimation of the parameters, a simplified method-of-moments was applied. To verify the accuracy of estimates, models were developed using 80% of the total data and validation was done on the remaining 20%. For the verification of the model, the fitness index, the root mean square error, and Kolmogorov-Smirnov statistics were used. The fitness index of the site index, height, and volume equation estimated from verification procedure were 0.967, 0.727, and 0.988 respectively and the root mean square error were 2.763, 1.817, and 0.007 respectively. The Kolmogorov-Smirnov test applied to Weibull function resulted in 75%. From the models developed in this research, the estimated volume and above-ground carbon stock were derived as $188.69m^3/ha$, 90.30 tC/ha when site index and stem number of 50-years-old Quercus variabilis stand show 14 and 697 respectively. The results obtained from this study may provide useful information about the growth of broad-leaf species and prediction of carbon stock for Quercus variabilis stand.