• Title/Summary/Keyword: stand density diagram

Search Result 9, Processing Time 0.018 seconds

Development of a Stand Density Management Diagram for Teak Forests in Southern India

  • Tewari, Vindhya Prasad;Alvarez-Gonz, Juan Gabriel
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.3
    • /
    • pp.259-266
    • /
    • 2014
  • Stand Density Diagrams (SDD) are average stand-level models which graphically illustrate the relationship between yield, density and mortality throughout the various stages of forest development. These are useful tools for designing, displaying and evaluating alternative density regimes in even-aged forest ecosystems to achieve a desired future condition. This contribution presents an example of a SDD that has been constructed for teak forests of Karnataka in southern India. The relationship between stand density, dominant height, quadratic mean diameter, relative spacing and stand volume is represented in one graph. The relative spacing index was used to characterize the population density. Two equations were fitted simultaneously to the data collected from 27 sample plots measured annually for three years: one relates quadratic mean diameter with stand density and dominant height while the other relates total stand volume with quadratic mean diameter, stand density and dominant height.

Prediction of Mortality and Yield for Chamaecyparis obtusa Using Stand Density Management Diagram (임분밀도관리도를 이용한 편백림의 고사량 및 수확량 예측)

  • Park, Joon Hyung;Yoo, Byung Oh;Lee, Kwang Soo;Park, Yong Bae;Kim, Hyung-Ho;Jung, Su Young
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.2
    • /
    • pp.174-183
    • /
    • 2018
  • This study aims to make the stand density management diagram which is useful for establishing stand density management system in Chamaecyparis obtusa forest. By using 216 sample plots to estimate Yield-Density relationship ($R^2=0.743$), the stand density management diagram was modeled by the estimated parameters. As a result of this diagram, after planting 3,000 trees per hectare the mortality rate of this unthinned C. obtusa stands over 80 years was estimated to be equal to $12.0{\sim}18.1trees{\cdot}ha^{-1}{\cdot}year^{-1}$, and stand volume was $463.1{\sim}695.4m^3{\cdot}ha^{-1}$, and stand density was $1,555{\sim}2,038trees{\cdot}ha^{-1}$. Developed stand density management diagram for C. obtusa is effective to establish the management criteria and production objective. Therefore, this study allowed us to make the optimal forest working plan.

Optimum Stand Density Control Considering Stability in Larix kaempferi Forests (임분 안정성을 고려한 일본잎갈나무 임분밀도 관리의 적정 수준)

  • Park, Joon Hyung;Chung, Sang Hoon;Kim, Sun Hee;Lee, Sang Tae
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.2
    • /
    • pp.202-210
    • /
    • 2020
  • This study investigated the optimal levels of stand density control considering the stability of Larix kaempferi stands. A stand density management diagram was developed from 259 sample plots. Based on these data, we determined an optimal level of the stand density control by identifying the relationship between the relative yield index (Ry) and height-to-diameter ratio. The estimated r-square (R2) of the stand density management diagram is 0.600. The analysis of the relationship between Ry and the slender tree incidence showed that when the stand density exceeded a certain threshold and the ratio of slender trees rapidly increased. The critical value of Ry was 0.63. The results of this study are expected to contribute to the establishment of stand management strategies that can reduce damage from natural causes, such as wind and snow, and to develop stand practice systems for the improved productivity of commercial forests.

Development and Validation of the Stand Density Management Diagram for Pinus densiflora Forests in Korea (소나무 임분밀도관리도 작성 및 실용성 검정)

  • Park, Joon Hyung;Lee, Kwang Soo;Yoo, Byung Oh;Park, Yong Bae;Jung, Su Young
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.3
    • /
    • pp.342-350
    • /
    • 2016
  • This study aims to make the stand density management diagram which is very useful for establishing systematic management plan and obtaining management goal in Pinus densiflora forest. To estimate 5 models mainly composed of stand density management diagram, we used total of 1,886 sample plots having more than 75% of the total basal area of the pine trees in each stand. To test the goodness of fit, $X^2$ was computed with a significance level of 5%, and the acceptable error range as 20%. Also standard deviation of the model was $34.59m^3{\cdot}ha^{-1}$, minimum acceptable error range was 16.59% and coefficient of variation was 22.11%. If we use the stand density management diagram, it would be useful to establish the timber yield and thinning plan understanding the pathway of stand density management.

The Production Objectives and Optimal Standard of Density Control Using Stand Density Management Diagram for Pinus densiflora Forests in Korea (임분밀도관리도를 이용한 소나무림의 적정 임분밀도 관리 기준 및 수확목표)

  • Park, Joon-hyung;Jung, Su-Young;Yoo, Byung-oh;Lee, Kwang-Soo;Park, Yong-bae;Kim, Hyung-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.4
    • /
    • pp.457-464
    • /
    • 2017
  • This study has utilized the stand density management diagram to devise an efficient management standard for the stand density for Pinus densiflora that secures the health of the stands and predicted the harvest goals. The appropriate stand control level was estimated by modeling the relationship of the relative yield index (Ry) to the ratio of slender trees within the stand through an exponential function; the coefficient of determination ($R^2$) was found to be 0.424 according to the estimation. The ratio of slender trees within the stand showed a tendency of rapid increase at a certain relative yield index; with this relational function, the appropriate Ry value of 0.84 was obtained. By estimating the curve of the Ry value 0.84, which was the appropriate stand density management level, as well as the height of dominant trees in the central region of Korea, the production objective for each site index was set. Assuming that the final age by the site indices ranged from 10 to 16 for the P. densiflora in central region of Korea, the number of production was estimated to be between 426 to 1,311 trees per ha. It was predicted that the production of medium-diameter logs larger than 30 cm in diameter is possible for the target DBH at a site index of more than 16; small-diameter logs larger than 20 cm in diameter for site indices 12 and 14 enabled, and small-diameter logs of less than 20 cm for site index 10.

Analysis of the Final Cutting Ages in Quercus variabilis Coppice Forests (굴참나무 맹아갱신지의 벌기령 추정)

  • Park, Joon Hyung;Chung, Sang Hoon;Kim, Sun Hee;Kim, Hyungho;Lee, Sang Tae
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.4
    • /
    • pp.468-476
    • /
    • 2020
  • we developed a stand density management diagram for Quercus variabilis in order to predict the final cutting ages of coppice forests based on management objectives. The sample data were classified into two groups: 603 data points for analysis and 113 data points for verification. Using these data, a stand density management diagram was constructed and a goodness-of-fit test was performed. The explanatory power (R2) of the constituent models for the stand density management diagram was 0.732 for the equivalent height curve and 0.990 for the equivalent diameter curve. According to the analysis of the final cutting age rangeof the highest production, the final cutting ages for 900 buds remaining per hectare was 42-44 years, and that for the 1,800 buds remaining per hectare was 38-42 years. With the third-grade log set as the production target, the final cutting age range with site index 16 and 14 was 25-28 years and 29-33 years, respectively. The results of this study provide baseline data for establishing a management plan for Q. variabilis coppice stands.

Improvement of the Thinning System by Exploring the Stand Density Management Criteria for Chamaecyparis obtusa in South Korea (편백림의 임분밀도 관리 기준 탐색을 통한 시업체계 개선)

  • Su Young Jung;Kwang Soo Lee;Hyun Soo Kim;Joon Hyung Park
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.1
    • /
    • pp.131-142
    • /
    • 2024
  • The purpose of this study was to estimate the optimal stand density criteria for each growth stage of Chamaecyparis obtusa (Siebold & Zucc.) Endl. to achieve the timber production goal for cypress forests and develop an optimal silvicultural system for forest thinning. A relative yield index (Ry) value of 0.75, presented as a stand density management criterion index, was estimated by analyzing the relationship characteristics between the composition ratio and stand density of slender trees from 216 sample plots of the recruited cypress forests. The analysis of the feasibility of achieving each production target in the existing silvicultural system for C. obtusa revealed that the growth rate according to the parameters of forest land productivity, such as site index and thinning intensity according to the increase in age, was not properly reflected. In the thinning system for each timber production target analyzed in this study, 353 high-quality large hardwoods from 498.1 m3/ha, 703 high-quality medium hardwoods from 376.2 m3/ha, and 1,758 small-diameter hardwoods from 249.5 m3/ha could be harvested. Although the silvicultural system prepared on the basis of the results of this study cannot be uniformly applied according to various management goals, this study is meaningful in that it presents empirical reference standards based on the stand density management diagram that reflects the growth characteristics of cypress forests in South Korea.

Tree Size Distribution Modelling: Moving from Complexity to Finite Mixture

  • Ogana, Friday Nwabueze;Chukwu, Onyekachi;Ajayi, Samuel
    • Journal of Forest and Environmental Science
    • /
    • v.36 no.1
    • /
    • pp.7-16
    • /
    • 2020
  • Tree size distribution modelling is an integral part of forest management. Most distribution yield systems rely on some flexible probability models. In this study, a simple finite mixture of two components two-parameter Weibull distribution was compared with complex four-parameter distributions in terms of their fitness to predict tree size distribution of teak (Tectona grandis Linn f) plantations. Also, a system of equation was developed using Seemingly Unrelated Regression wherein the size distributions of the stand were predicted. Generalized beta, Johnson's SB, Logit-Logistic and generalized Weibull distributions were the four-parameter distributions considered. The Kolmogorov-Smirnov test and negative log-likelihood value were used to assess the distributions. The results show that the simple finite mixture outperformed the four-parameter distributions especially in stands that are bimodal and heavily skewed. Twelve models were developed in the system of equation-one for predicting mean diameter, seven for predicting percentiles and four for predicting the parameters of the finite mixture distribution. Predictions from the system of equation are reasonable and compare well with observed distributions of the stand. This simplified mixture would allow for wider application in distribution modelling and can also be integrated as component model in stand density management diagram.

Site Characteristics and Carbon Dynamics of the Gwangneung Deciduous Natural Forest in Korea

  • Lim, Jong-Hwan;Shin, Joon-Hwan;Kim, Choonsig;Oh, Jeong-Soo
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.163-163
    • /
    • 2003
  • The study area, Kwangneung Experiment Forest (KEF) is located on the west-central portion of Korean peninsula and belongs to a cool-temperate broadleaved forest zone. At the old-growth deciduous forest near Soribong-peak (533.1m) in KEF, we have established a permanent plot and a flux tower, and the site was registered as a KLTER site and also a KoFlux site. In this study, we aimed to present basic ecological characteristics and synthetic data of carbon budgets and flows, and some monitoring data which are essential for providing important parameters and validation data for the forest dynamics models or biogeochemical dynamics models to predict or interpolate spatially the changes in forest ecosystem structure and function. We made a stemmap of trees in 1 ha plot and analyzed forest stand structure and physical and chemical soil characteristics, and estimated carbon budgets by forest components (tree biomass, soils, litter and so on). Dominant tree species were Quercus serrata and Carpinus laxiflora, and accompanied by Q. aliena, Carpinus cordata, and so on. As a result of a field survey of the plot, density of the trees larger than 2cm in DBH was 1,473 trees per ha, total biomass 261.2 tons/ha, and basal area 28.0 m2/ha. Parent rock type is granite gneiss. Soil type is brown forest soil (alfisols in USDA system), and the depth is from 38 to 66cm. Soil texture is loam or sandy loam, and its pH was from 4.2 to 5.0 in the surface layer, and from 4.8 to 5.2 in the subsurface layer. Seasonal changes in LAI were measured by hemispherical photography at the l.2m height, and the maximum was 3.65. And the spatial distributions of volumetric soil moisture contents and LAIs of the plot were measured. Litterfall was collected in circular littertraps (collecting area: 0.25m2) and mass loss rates and nutrient release patterns in decomposing litter were estimated using the litterbag technique employing 30cm30cm nylon bags with l.5mm mesh size. Total annual litterfall was 5,627 kg/ha/year and leaf litter accounted for 61% of the litterfall. The leaf litter quantity was highest in Quercus serrata, followed by Carpinus laxiflora and C. cordata, etc. Mass loss from decomposing leaf litter was more rapid in C. laxiflora and C. cordata than in Q. serrata litter. About 77% of C. laxiflora and 84% of C. cordata litter disappeared, while about 48% in Q. serrata litter lost over two years. The carbon pool in living tree biomass including below ground biomass was 136 tons C/ha, and 5.6 tons C/ha is stored in the litter layer, and about 92.0 tons C/ha in the soil to the 30cm in depth. Totally more than about 233.6 tons C/ha was stored in DK site. And then we have drawn a schematic diagram of carbon budgets and flows in each compartment of the KEF site.

  • PDF