• 제목/요약/키워드: stamen

검색결과 62건 처리시간 0.02초

Causal Agents of Blossom Blight of Kiwifruit in Korea

  • Lee, Young-Sun;Han, Hyo-Shim;Kim, Gyoung-Hee;Koh, Young-Jin;Hur, Jae-Seoun;Jung, Jae-Sung
    • The Plant Pathology Journal
    • /
    • 제25권3호
    • /
    • pp.220-224
    • /
    • 2009
  • The causal agents of bacterial blossom blight in kiwifruit were isolated from flowers displaying symptoms in Korea. The pathogens were characterized by biochemical and physiological tests, and identified on the basis of 16S rDNA and 16S-23S internal transcribed spacer (ITS) sequences. Pathogenicity tests demonstrated that the blossom blight of kiwifruit in Korea is caused by two pathogens, Pseudomonas syringae pv. syringae and P. fluorescens. Carbon source utilization and DNA-DNA hybridization experiments confirmed P. fluorescens as one of the causal agents of blossom blight of kiwifruit. P. syringae pv. syringae and P. fluorescens can be distinguished from each other by the symptoms they produce in flowers. P. syringae pv. syringae primarily affected the stamen, while P. fluorescens caused rotting of all internal tissues of buds or flowers.

Ecological Characteristics of Lycoris radiata with Habitat Types

  • Lee, Jeom-Sook;Ihm, Byung-Sun;Kim, Ha-Song
    • The Korean Journal of Ecology
    • /
    • 제26권5호
    • /
    • pp.247-250
    • /
    • 2003
  • The investigation of ecological characteristics of Lycoris radiata was carried out in flooding (site I), half flooding (site II) and dry stands (site III). Seasonal change of air temperature showed similar patterns and that of light intensity showed quite difference among three L. radiata stands. Seasonal change of soil water content showed a great difference among three L. radiata stands. The study area was dominated by Pinus densiflora, P. thunbergii and L. radiata communities. The number of bulb in 1. radiata increased in September with bulb formation and decreased in January. Bulb weight in L. radiata was different from each site. The numbers of blossom were 23, 13 and 9, respectively in site I, II and III. The length of wreath were 17.0, 13.0 and 11.0cm, respectively, the length of stamen were 7.0, 6.4 and 6.5 cm, respectively and the length of stalk were 60.0, 45.0 and 42.0 cm, respectively in site I, II and III. The leaf of L. radiata developed rapidly in site I with sufficient water supply and lower light intensity, the number and the length of rootlets increased considerably in site III with insufficient water supply and higher light intensity, and the ecological characteristics in site II was intermediate between site I and site III. There was no great difference between the numbers of rootlets in site I and site II, which were due to sufficient water supply in two stands.

The People of White Clothes(白衣民族) from Modern Perspectives

  • Soh, Hwang-Oak
    • International Journal of Costume and Fashion
    • /
    • 제11권2호
    • /
    • pp.25-36
    • /
    • 2011
  • There seems to have arisen a preference for wearing white clothes amongst Koreans from the long past, even tracing back to the ancient times in tradition of Shamanism worshipping the sun. This "preference" persevered throughout the passage of time, even with the numerous internal and external pressures to forbid or interrupt this tradition. The wearing of White Clothes by Koreans can also be often found in the various records made by foreign visitors recognized as a noticeable phenomenon, and representative of Korea which seems to have influences even until now in the impressions of the country. Despite of this tradition that seems to have lasted over the last 5000 years, all of a sudden it disappeared within the last 50years. In the contemporary modern fashion of Korea, it seems hard to say, Koreans enjoyably sporting White clothes, is a stand out trait anymore, thus the equation of Koreans equivalent to the people of white not a valid stamen anymore. it could not be said that this tradition is representative of the Korean cultural Identity. Why would this be the case? What happened to the long lasted pattern? In what form or shape has this tradition trasnsformed and reappears before us today? This paper seeks to find the answers to these questions.

Solid-Phase Microextraction에 의한 백련의 휘발성 향기 성분 분석 (Volatile Flavor Composition of White-flowered Lotus by Solid-phase Microextraction)

  • 최향숙
    • 한국식품영양학회지
    • /
    • 제30권2호
    • /
    • pp.363-370
    • /
    • 2017
  • This study investigated the chemical composition of headspace gas from white-flowered lotus (Nelumbo nucifera Gaertner). Volatile flavor compositions of headspace from white-flowered lotus (floral leaf, stamen, flower stalk, stem) were investigated through the solid-phase microextraction method using polydimethylsiloxane-divinylbenzene fiber. The headspace was directly transferred to a gas chromatography-mass spectrometry. Sixty-three volatile flavor constituents were detected in the headspace of lotus floral leaves, and undecanoic acid (7.81%) was the most abundant component. Fifty-three volatile flavor constituents were detected in the headspace of lotus stamina, and isobutylidene phthalide (7.94%) was the most abundant component. Forty-four volatile flavor constituents were detected in the headspace of lotus flower stalks, and 3-butyl dihydrophthalide (11.23%) was the most abundant component. Fifty-nine volatile flavor constituents were detected in the headspace of lotus stems, and ligustilide (16.15%) was the most abundant component. The content of phthalides was higher in the headspace of flower stalks and stems, while alcohols and acids were the predominant compounds in lotus floral leaves.

Family of floral homeotic genes (MADS-box genes) expressed in early flower Panax genseng

  • Yoon, Sunha;Yoon, Euisoo
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2002년도 제9차 국제심포지움 및 추계정기학술발표회
    • /
    • pp.15-15
    • /
    • 2002
  • In higher dicotyledonous plants, the floral organs are arranged in four different whorls, containing sepals, petals, stamens and carpels. petals, stamens and carpels. The specification of floral organ identity is explained by the ABC model (Weigel and Meyerowitz 1994). Expression of an A-function gene specifies sepal formation in whorl 1. the combination of A-and B-function genes specifies the formation of petals in whorl 2, B-and C-function genes spesify stamen formation in whorl 3, and expression of the C-function alone determines the formation of carpels in whorl 4. A-. B-, C-function genes have been isolated from many plant species and most of them belong to the family of MADS-box genes encoding transcription factor. In contrast to the flower of higher dicots, the perianths of genseng plants have three whorls of almost identical petaloid organs. van Tunen et al. (1993) proposed a modified ABC model, exemplified with tulip. In this model, B-function genes are expressed in whorl 1 as well as whorl 2 and 3, theefore the organs of whorl 1 and whorl 2 have the same petaloid structure. They proposed this model with the molphological data of wild type and mutant flowers of tulip, however, there are no molecular data.(중략)

  • PDF

환경 중 유전독성물질 검색을 위한 자주달개비 생물검정 기법의 적용연구 (Biomonitoring the Genotoxicity of Environmental Pollutants Using the Tradescantia Bioassay)

  • 신해식
    • 한국환경독성학회:학술대회논문집
    • /
    • 한국환경독성학회 2004년도 춘계학술대회
    • /
    • pp.47-60
    • /
    • 2004
  • Higher plants can be valuable genetic assay systems for monitoring environmental pollutants and evaluating their biological toxicity. Two assays are considered ideal for in situ monitoring and testing of soil, airborne and aqueous mutagenic agents; the Tradescantia stamen hair assay for somatic cell mutations and the Tradescantia micronucleus assay for chromosome aberrations. Both assays can be used for in vivo and in vitro testing of mutagens. Since higher plant systems are now recognized as excellent indicators and have unique advantages over in situ monitoring and screening, higher plant systems could be accepted by regulatory authorities as an alternative first-tier assay system for the detection of possible genetic damages resulting from the pollutants or chemicals used and produced by industrial sectors. It has been concluded that potential mutagen and carcinogen such as the heavy metals among indoor air particulates, volatile compounds in the working places, soil, and water pollutants contribute to the overall health risk. This contribution can be considerable under certain circumstances. It is therefore important to identify the level of genotoxic activity in the environment and to relate it to the biomarkers of a health risk in humans. The results from the higher plant bioassays could make a significant contribution to assessing the risks of pollutants and protecting the public from agents that can cause mutation and/or cancer. The plant bioassays, which are relatively inexpensive and easy to handle, are recommended for the scientists who are interested in monitoring pollutants and evaluating their environmental toxicity to living organisms.

  • PDF

자주달개비 생물검정 기법을 이용한 환경오염 평가 (Assessment of Environmental Pollution with Tradescantia Bioassays)

  • 김진규;신해식
    • 한국환경생물학회:학술대회논문집
    • /
    • 한국환경생물학회 2004년도 학술대회
    • /
    • pp.1-15
    • /
    • 2004
  • Higher plants can be valuable genetic assay systems for monitoring environmental pollutants and evaluating their biological toxicity. Two assays are considered ideal for in situ monitoring and testing of soil, airborne and aqueous mutagenic agents; the Tradescantia stamen hair assay for somatic cell mutations and the Tradescantia micronucleus assay for chromosome aberrations. Both assays can be used for in vivo and in vitro testing of mutagens. Since higher plant systems are now recognized as excellent indicators and have unique advantages over in situ monitoring and screening, higher plant systems could be accepted by regulatory authorities as an alternative first-tier assay system for the detection of possible genetic damages resulting from the pollutants or chemicals used and produced by industrial sectors. It has been concluded that potential mutagen and carcinogen such as the heavy metals among indoor air particulates, volatile compounds in the working places, soil, and water pollutants contribute to the overall health risk. This contribution can be considerable under certain circumstances. It is therefore important to identify the level of genotoxic activity in the environment and to relate it to the biomarkers of a health risk in humans. The results from the higher plant bioassays could make a significant contribution to assessing the risks of pollutants and protecting the public firom agents that can cause mutation anuor cancer. The plant bioassays, which are relatively inexpensive and easy to handle, are recommended for the scientists who are interested in monitoring pollutants and evaluating their environmental toxicity to living organisms.

  • PDF

긴뚝갈(마타리과): 국내 미기록종 (Patrinia monandra (Valerianaceae): an unrecorded species in Korea)

  • 김진석;이병천;정재민;박재홍
    • 식물분류학회지
    • /
    • 제34권2호
    • /
    • pp.167-172
    • /
    • 2004
  • 전라남도 완도군 군외면 상황봉, 보길면 보길도, 전라북도 부안군 진서면 내소사에서 발견된 국내 미기록 종, 긴뚝갈(Patrinia monandra C. B. Clarke)을 도해 및 기재, 보고한다. 긴뚝갈은 잎의 모양, 악통의 색, 수술의 수, 열매의 형태 등에서 뚝갈[Patrinia villosa (Thunb.) Juss.]과 구분이 되며, 잎과 화서의 포가 뚝갈에 비해 긴 특징을 고려하여 긴뚝갈로 명명하였다.

Study of a Tobacco MADS-Box Gene Triggering Flower Formation

  • Chung, Yong-Yoon;N, Gynheung-A
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1996년도 제10회 식물생명공학심포지움 고등식물 발생생물학의 최근 진보
    • /
    • pp.10-18
    • /
    • 1996
  • Recently, we have reported a rice MADS-box gene, OsMADS1, as a molecular factor triggering flower formation; this has been well studied in a heterologous system (Chung et al., 1994). In order to study whether the OsMADS1 homolog exists in other plant species, the OsMADS1 cDNA was used as a probe to screen a tobacco cDNA library, and a potential homolog, NtMADS3, was isolated. Sequence analysis revealed that the gene shares 56.1% identity in whole amino acids with OsMADS1. Like OsMADS1, the NtMADS3 gene starts to express at a very early stage of flower development, and the expression continues up to flower maturation. In the tobacco flower, the gene is expressed in whorl 2,3 and 4, corresponding to the petal, stamen, and carpel, respectively. Upon ectopic expression in the homologous system, NtMADS3 caused a trasition from inflorescence shoot meristem into floral meristem, reducing flowering time dramatically. These phenotypes strongly suggest the NtMADS3 gene is the OsMADS1 homolog of tobacco. Hybrids between the OsMADS1 and the NtMADS3 plants were also generated. The hybrids flowered even earlier than these two transgenic plants. The detailed studies are discussed here.

  • PDF

Family of floral homeotic genes (MADS-box genes) expressed in early flower Panax genseng

  • Yoon, Sunha;Yoon, Euisoo
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2002년도 심포지엄
    • /
    • pp.98-98
    • /
    • 2002
  • In higher dicotyledonous plants, the floral organs are arranged in four different whorls, containing sepals, stamens and carpels. petals, stamens and carpels. The specification of floral organ identity is explained by the ABC model (Weigel and Meyerowitz 1994). expression of an A-function gene specifies sepal formation in whorl 1. the combination of A-and B-function genes specifies the formation of petals in whorl 2, B-and C-function genes spesify stamen formation in whorl 3, and expression of the C-function alone determines the formation of carpels in whorl 1. A-, B-, C-function genes have been isolated from many plant species and most of them belong to the family of MADS-box genes encoding transcription factor. In contrast to the flower of higher dicots, the perianths of genseng plants have three whorls of almost identical petaloid organs. van Tunen et al. (1993) proposed a modified ABC model, exemplified with tulip. In this model, B-function genes are expressed in whorl 1 as well as whorl 2 and 3, theefore the organs of whorl 1 and whorl 2 have the same petaloid structure. They proposed this model with the molphological data of wild type and mutant flowers of tulip, however, there are no molecular data. To date, B-function genes were isolated several grass plants, rice, wheat and maize. However, grass plants have highly derived flowers, without well-developed perianths. To find out how the ABC model has to be modified for the Genseng plants, we have cloned and characterized orthologs of A-, B-, C-function genes from genseng.

  • PDF