• Title/Summary/Keyword: stainless-steel

Search Result 3,657, Processing Time 0.03 seconds

High alloyed new stainless steel shielding material for gamma and fast neutron radiation

  • Aygun, Bunyamin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.647-653
    • /
    • 2020
  • Stainless steel is used commonly in nuclear applications for shielding radiation, so in this study, three different types of new stainless steel samples were designed and developed. New stainless steel compound ratios were determined by using Monte Carlo Simulation program Geant 4 code. In the sample production, iron (Fe), nickel (Ni), chromium (Cr), silicium (Si), sulphur (S), carbon (C), molybdenum (Mo), manganese (Mn), wolfram (W), rhenium (Re), titanium (Ti) and vanadium (V), powder materials were used with powder metallurgy method. Total macroscopic cross sections, mean free path and transmission number were calculated for the fast neutron radiation shielding by using (Geant 4) code. In addition to neutron shielding, the gamma absorption parameters such as mass attenuation coefficients (MACs) and half value layer (HVL) were calculated using Win-XCOM software. Sulfuric acid abrasion and compressive strength tests were carried out and all samples showed good resistance to acid wear and pressure force. The neutron equivalent dose was measured using an average 4.5 MeV energy fast neutron source. Results were compared to 316LN type stainless steel, which commonly used in shielding radiation. New stainless steel samples were found to absorb neutron better than 316LN stainless steel at both low and high temperatures.

Surface Coating and Corrosion Characteristics of Bipolar Plates of PEMFC Application (PEMFC용 분리판 표면코팅 및 부식성 평가)

  • Kang, Kyung-Min;Kim, Dong-Mook;Choi, Jeong-Sik;Cha, In-Soo;Yun, Young-Hoon
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.2
    • /
    • pp.199-205
    • /
    • 2011
  • Stainless steel 304 and 316 plates were deposited with the multi-layered coatings of titanium film (0.1 um) and gold film (1-2 um) by an electron beam evaporation method. The XRD patterns of the stainless steel plates modified with the multi-layered coatings showed the crystalline phases of the external gold film and the stainless steel substrate. Surface microstructural morphologies of the stainless steel bipolar plates modified with multi-layered coatings were observed by AFM and FE-SEM images. The external gold films formed on the stainless steel plates showed micro structure of grains of about 100 nm diameter. The grain size of the external surface of the stainless steel plates increased with the gold film thickness. The electrical resistance and water contact angle of the stainless steel bipolar plates covered with multi-layered coatings were examined with the thickness of the external gold film.

Optimum Cathodic Protection for Stainless Steel Shaft of Small-Size Boat (소형선박용 스테인리스강 축의 음극방식 응용)

  • Bae, I.Y.;Park, J.D.;Kang, D.S.;Lee, M.H.;Kim, K.J.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.232-233
    • /
    • 2005
  • Stainless steel has been stably used closed by passivity oxidation films($Cr_2O_3$) is made by neutral atmospheric environment. However, passivity oxidation films of the surface of stainless steel occasionally comes to be destroyed in seawater which is influenced by an environment having halogen ion like $Cl^-$, then, localization corrosion comes to occur. Stainless steel 304 for shaft system material of the small-size FRP fishing boat on seawater environments made an experiment on simulation of sacrifical anode(Al, Zn). Through these experiment and study, following results have been obtained ; According to the field inspection and corrosion simulation, the corrosion on the 2nd class stainless steel shaft(STS 304) in FRP fishing boat has been verified to occur by crevice corrosion and galvanic corrosion etc.. According to the comparison and analysis of Stainless steel 304 shaft materials after simulation leaving unprotected and applying cathodic protection, unprotected shaft specimen of stainless steel 304 was severely corroded, but, protected shaft specimen was not totally corroded. This result is assumed to be made by the facts that anodic reaction, $Fe{\rightarrow}Fe^{2+}$ + $2e^-$, has been restricted by the cathodic protection current of sacrificial anode material.

  • PDF

Study on Hydrogen Effect in TIG Welded Stainless Steel (TIG 용접된 스테인리스강의 수소영향에 대한 연구)

  • Lee, Jin-Kyung;Lee, Sang-Pill;Bae, Dong-Su;Lee, Joon-Hyun
    • Journal of Power System Engineering
    • /
    • v.20 no.6
    • /
    • pp.58-63
    • /
    • 2016
  • A stainless steel has high corrosion resistance because of nickel in material, so it is used as materials for transportation and storage of hydrogen. In this study, TIG(tungsten ingot gas) welding was carried out on the stainless steel using the storage vessel of hydrogen. The microscopic structures at each region of TIG welded material such as HAZ, weld and base metals using optical microscope were observed. And the damage behavior of stainless steel that underwent the hydrogen charging using nondestructive evaluation was also studied. Ultrasonic test, which is the most generalized nondestructive technique, was applied to evaluate the relationship between the ultrasonic wave and mechanical properties at each zone of TIG welded stainless steel. The velocity and attenuation coefficients of ultrasonic wave didn't show a remarkable difference at each region of welded stainless steel. However, the attenuation coefficient was the highest at the weld zone when hydrogen charged stainless steel. In addition, acoustic emission test was also used to study the dynamic behavior of stainless steel experienced both hydrogen charging and weld. Lots of AE event at elastic region of stress-strain curve were occurred both the hydrogen charged specimen and the free specimen.

A Study on Applicability of Stainless Steel Type 316N to the PZR Surge-line of OPR1000 and APR1400 (Type 316N 스테인리스강의 OPR1000 및 APR1400 가압기 밀림관 적용성에 대한 연구)

  • Yoo, One;Jung, Sung-Hoon;Park, Sung-Ho;Sohn, Gap-Heon;Lee, Bong-Sang;Kim, Min-Chul
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.287-292
    • /
    • 2008
  • The applicability of stainless steel type 316N to the PZR surge-lines of OPR1000 and APR1400 is investigated. So far, strainless steel type 347 has been used for the OPR1000 surge-lines. The degree of improvement in the leak-before-break(LBB) and component design margin is evaluated when stainless steel type 347 is substituted by type 316N. For the study, the tensile and J-R tests on type 316N and type 347 stainless steels were performed at 316 and the microstructure of both types was examined. Stainless steel type 316N shows the higher values on the stress-strain curves, J-R curves and stress intensity, Sm, compared to those of type 347. Therefore, stainless steel type 316N ensures the higher LBB and component design margins. As a result, this study shows that stainless steel type 316N could substitute type 347 for the surge-lines of OPR1000 and APR1400.

  • PDF

Evaluation of Electrochemical Corrosion Characteristics for Hot-Dip Aluminized 304 Stainless Steel in Seawater (알루미늄 용융 도금된 304 스테인리스강의 해수 내 전기화학적 부식 특성 평가)

  • Chong, Sang-Ok;Park, Il-Cho;Han, Min-Su;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.6
    • /
    • pp.354-359
    • /
    • 2015
  • Stainless steel has poor corrosion resistance in marine environment due to the breakdown of a passive film caused by chloride. It suffers electrochemical corrosion like pitting corrosion, crevice corrosion, and stress corrosion crack (SCC) in marine environment. In general, it indicates that the passive film of $Al_2O_3$ has better corrosion resistance than that of $Cr_2O_3$ in seawater. This paper investigated the damage behavior 304 stainless steel and hot-dip aluminized 304 stainless steel in seawater solution. Various electrochemical experiments were carried out including potential measurement, potentiodynaimic experiment, Tafel analysis and galvanostatic experiment. As a result of anodic polarization experiment, higher pitting damage depth was indicated at 304 stainless steel than hot-dip aluminized 304 stainless steel. In addition, relatively higher corrosion current density was shown at hot-dip aluminized stainless steel as a result of Tafel analysis.

A Comparison Study on Strength of Stainless Steel Tube and Steel Tube Stub-columns (스테인리스강관과 일반구조용강관 단주내력 비교에 관한 연구)

  • Jang, Ho Ju;Yu, Jea Hee;Yang, Young Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.561-570
    • /
    • 2003
  • This study evaluate the characteristics of stainless steel for the use of stainless steel tubes as structural members. The strength of stainless steel tube was compared with that of steel tube stub-columns through tensile experiment and compressed experiment. The selected experimental parameters were diameter (width)-thickness and section shape. The results of tests showed that stainless steel tubes could be predicted as superior to steel tubes in terms of tensile strength, yield ratio, elongation percentage, and absorption ability of energy. The yield strength of stainless steel tubes were found to be higher than the Korean Standards ($Fy=2.1tf/cm^2$) and the design strength of SIJ-ASD($Fy=2.4tf/cm^2$). It was also higher then the yield strength of steel tubes. The plastic deformation of stainless steel tubes was found to beto that of steel tubes.

Development and Application of High-Cr Ferritic Stainless Steels as Building Exterior Materials

  • Kim, Yeong H.;Lee, Yong H.;Lee, Yong D.
    • Corrosion Science and Technology
    • /
    • v.7 no.6
    • /
    • pp.324-327
    • /
    • 2008
  • Stainless steels have been widely used as a building exterior materials in Asian countries for the last decade. It is required for the materials in this field to have an aesthetic appearance, a relatively high strength, and an excellent corrosion resistance. Other metallic materials such as copper, aluminum, and carbon steels have been also used as the exterior materials. Considering the cost of maintenance, stainless steel, having the outstanding corrosion resistance, is replacing other materials in the several parts in the building exteriors. Ferritic stainless steel has been applied as the roofing materials because its thermal expansion is much smaller than that of austenitic stainless steel. Therefore, it is suitable for the large-scale construction such as airport terminal, convention center, and football stadium. To improve the corrosion resistance of the ferritic stainless steels, the modification of alloy composition has been studied to develop new grade materials and the progress in the surface technology has been introduced. Corrosion properties of these materials were evaluated in the laboratory and in the field for longer than two years. High-Cr ferritic stainless steel showed excellent corrosion resistance to the atmospheric environments. In the region close to the sea, the corrosion resistance of high-Cr ferritic stainless steel was much superior to that of other materials, which may prove this steel to be the appropriate materials for the construction around seashore. In some of the large constructions around seashore in South Korea, high-Cr ferritic stainless steels have been used as the building exterior materials for six years.

Comparative Study on Microstructures of Hot-rolled STS 304L/A516-70N and STS 316L/A516-70N Clad Plates (열간압연으로 제조된 STS 304L/A516-70N과 STS 316L/A516-70N 클래드재들의 미세조직에 대한 비교 연구)

  • Jin, Ju-Chan;Cho, Soochul;Sim, Hoseop;Lee, Young-Kook
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.4
    • /
    • pp.171-178
    • /
    • 2021
  • In the present study, we comparatively investigated the microstructures of two hot-rolled stainless steel clad plates; STS 304L - low carbon steel A516-70N and STS 316L - A516-70N. The STS 304L/A516-70N clad plate (Clad_304L_Ni) had a Ni-interlayer between stainless steel and carbon steel and a 90 ㎛ thick deformation band of unrecrystallized austenite grains on the stainless steel. The STS 316L/A516-70N clad plate (Clad_316L) had no interlayer and almost fully recrystallized austenite grains. Clad_304L_Ni exhibited the thinner a decarburized layer in carbon steel and a total carburized layer in stainless steel than Clad_316L. However, a severely carburized layer in stainless steel was thicker for Clad_304L_Ni than Clad_316L. Hardness profiles near the interface of clad plates matched well with microstructures at locations where the hardness values were measured.

Crevice Corrosion Resistance of Stainless Steels in Natural Sea Water with different Post Welding Treatment

  • Lee, Y.H.;Kim, Y.H.;Kim, H.
    • Corrosion Science and Technology
    • /
    • v.2 no.5
    • /
    • pp.219-224
    • /
    • 2003
  • Crevice corrosion of stainless steels in natural seawater was investigated for several post weld treatments; as-annealed, as-welded, pickled, and ground. The results confirmed the effect of the biofilm on the cathodic reaction leading to an ennoblement of the rest potential. The degree of ennoblement of corrosion potential depends on the surface finish. As-annealed and pickled samples show stable corrosion potential approaching to 200 ~ 300 mV (SCE) while as-welded and ground samples show the fluctuating corrosion potential. This points to a situation where there are conflicting effects determining the trend in free corrosion potential. Crevice corrosion initiation will tend to pull the free corrosion potential in the active direction, whereas the presence of biofilm will tend to ennoble corrosion potential. There was no visible attack on UNS S31803, S32550, and 2205W. Therefore, those stainless steel grades appeared to be resistant to crevice corrosion in natural seawater on condition of weld metal.