• Title/Summary/Keyword: stainless pipe

Search Result 189, Processing Time 0.026 seconds

Bending ratcheting behavior of pressurized straight Z2CND18.12N stainless steel pipe

  • Wang, Lei;Chen, Gang;Zhu, Jianbei;Sun, Xiuhu;Mei, Yunhui;Ling, Xiang;Chen, Xu
    • Structural Engineering and Mechanics
    • /
    • v.52 no.6
    • /
    • pp.1135-1156
    • /
    • 2014
  • The ratcheting effect greatly challenges the design of piping components. With the assistance of the quasi-three point bending apparatus, ratcheting and the ratcheting boundary of pressurized straight Z2CND18.12N stainless steel pipe under bending loading and vertical displacement control were studied experimentally. The characteristics of progressive inelastic deformation in axial and hoop directions of the Z2CND18.12N stainless steel pipes were investigated. The experiment results show that the ratcheting strain occurs mainly in the hoop direction while there is less ratcheting strain in the axial direction. The characteristics of the bending ratcheting behavior of the pressure pipes were derived and compared under load control and displacement control, respectively. The results show that the cyclic bending loading and the internal pressure affect the ratcheting behavior of the pressurized straight pipe significantly under load control. In the meantime, the ratcheting characteristics are also highly associated with the cyclic displacement and the internal pressure under displacement control. All these factors affect not only the saturation of the ratcheting strain but the ratcheting strain rate. A series of multi-step bending ratcheting experiments were conducted under both control modes. It was found that the hardening effect of Z2CND18.12N stainless steel pipe under previous cyclic loadings no matter with high or low displacement amplitudes is significant, and the prior loading histories greatly retard the ratcheting strain and its rate under subsequent loadings. Finally, the ratcheting boundaries of the pressurized straight Z2CND18.12N stainless steel pipe were determined and compared based on KTA/ASME, RCC-MR and the experimental results.

Selective Corrosion of Socket Welds of Stainless Steel Pipes Under Seawater Atmosphere (해수분위기에서 스테인리스강 배관 소켓 용접부의 선택적 부식)

  • Boo, Myung-Hwan;Lee, Jang-Wook;Lee, Jong-Hoon
    • Corrosion Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.224-230
    • /
    • 2020
  • Stainless steel has excellent corrosion resistance. The drawback is that pitting occurs easily due to the concentration of chloride. In addition, corrosion of socket weld, which is structurally and chemically weaker than the other components of the pipe, occurs rapidly. Since these two phenomena overlap, pinhole leakage occurs frequently in the seawater pipe socket welds made of stainless steel at the power plants. To analyze this specific corrosion, a metallurgical analysis of the stainless steel socket welds, where the actual corrosion occurred during the power plant operation, was performed. The micro-structure and chemical composition of each socket weld were analyzed. In addition, selective corrosion of the specific micro-structure in a mixed dendrite structure comprising γ-austenite (gamma-phase iron) and δ-ferrite (iron at high temperature) was investigated based on the characteristic micro-morphology and chemical composition of the corroded area. Finally, the different corrosion stages and characteristics of socket weld corrosion are summarized.

The Influence of Chlorine Application on Corrosion and Bacterial Growth in Home Plumbing Systems (급수관내 염소 주입이 미생물의 증식과 부식에 미치는 영향)

  • Kim, Tae-Hyun;Lee, Yoon-Jin;Lim, Seung-Joo
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.5 s.92
    • /
    • pp.431-439
    • /
    • 2006
  • This research was conducted using a model home plumbing system composed of copper, stainless steel, galvanized iron, carbon steel, and PVC (polyvinyl chloride) pipe. The number of bacteria present in stainless steel pipe and PVC was higher than other pipes. High turbidity and zinc release were found in galvanized iron pipe material and detected during the first 6 months. Conversely, there was a decrease in turbidity and zinc release after 6 months resulting in levels similar to other pipes. Copper concentration decreased as operation times increased. In this experiment, the number of bacteria detected in biofilm for a copper pipe continued to increase. Pipe material influenced bacterial numbers in biofilm and water. This showed that elevated chlorine could not control bacterial growth in biofilm for galvanized iron and stainless steel systems. It also suggested that the dosing of chlorine might not be available for all kinds of pipes. Therefore, another complementary method should be introduced to manage biofilm effectively in water distribution systems.

Proposal of residual stress mitigation in nuclear safety-related austenitic stainless steel TP304 pipe bended by local induction heating process via elastic-plastic finite element analysis

  • Kim, Jong-Sung;Kim, Kyoung-Soo;Oh, Young-Jin;Oh, Chang-Young
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1451-1469
    • /
    • 2019
  • This paper proposes a residual stress mitigation of a nuclear safety-related austenitic stainless steel TP304 pipe bended by local induction heating process via performing elastic-plastic finite element analysis. Residual stress distributions of the pipe bend were calculated by performing finite element analysis. Validity of the finite element analysis procedure was verified via comparing with temperature histories measured by using thermocouples, ultrasonic thickness measurement results, and residual stress measurement results by a hole-drilling method. Parametric finite element stress analysis was performed to investigate effects of the process and geometric shape variables on the residual stresses on inner surfaces of the pipe by applying the verified procedure. As a result of the parametric analysis, it was found that it is difficult to considerably reduce the inner surface residual stresses by changing the existing process and geometric shape variables. So, in order to mitigate the residual stresses, effect of an additional process such as cooling after the bending on the residual stresses was investigated. Finally, it was identified that the additional heating after the bending can significantly reduce the residual stresses while other variables have insignificant effect.

A study on the Analyses of T-branch Pipe Forming using a Finite Element Method (유한요소법을 이용한 분기배관의 성형해석에 관한 연구)

  • Nam, Jun-Seok;Baek, Chang-Sun;Lim, Kwang-Kyu;SaKong, Seong-Ho;So, Soo-Hyun;Min, Kyung-Tak
    • Fire Science and Engineering
    • /
    • v.21 no.1 s.65
    • /
    • pp.98-105
    • /
    • 2007
  • On this study, we verified the possibilities of making T-branch pipe forming with carbon steel pipes and stainless steel pipes used by common FEM Program(ABAQUS) which are widely used in the fire protection and building construction fields. In this kind of T-branch pipe forming works, in principle, the seamless pipe is used. If the pipe has the seam, the forming face must be the opposite side of the seam. The forming works are carried out by a truncated cone shaped plug. We found that the face slope and the length of plug are the most important factor in pipe forming. Based on the results of forming analyses, we proposed the minimum height and thickness of pipe branch forming.

Effect of Manufacturing Process on the Corrosion Properties of 304L Stainless Steel Pipe with 8-inch Diameter (8인치 직경의 304L 스테인리스강관의 부식특성에 미치는 제작공정의 영향)

  • Kim, K.T.;Hur, S.Y.;Chang, H.Y.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.279-286
    • /
    • 2018
  • Austenitic stainless steels used in nuclear power plants mainly use pipes made of seamless pipes, which depend on imports. The manufacturing process and high cost are some of the problems associated with seamless pipes. Therefore, in this study, the corrosion characteristics of the seamless pipe and the SAW pipe were assessed to determine the safety and reliability of the SAW pipe in a bid to replace the seamless pipe. Microstructure was analyzed using an optical microscope and the degree of hardness was measured using a Rockwell B scale. Intergranular corrosion resistance was evaluated by ASTM A262 Practice A, C, and E methods. The degree of sensitization was determined using a DL-EPR test. Anodic polarization test was performed in deaerated 1% NaCl solution at $30^{\circ}C$ and the U-bend method was used to evaluate the SCC resistance in 0.01 M $Na_2S_4O_6$ at $340^{\circ}C$ and 40% NaOH solution at $290^{\circ}C$. Weld metal of the SAW pipe specimen showed relatively high degree of sensitization and intergranular corrosion rate. However, annealing to SAW pipes improved the corrosion properties in comparison to that of the seamless pipe.

Comparison of Biofilm Formed on Stainless Steel and Copper Pipe Through the Each Process of Water Treatment Plant (정수처리 공정 단계별 스테인리스관과 동관에 형성된 생물막 비교)

  • Kim, Geun-Su;Min, Byung-Dae;Park, Su-Jeong;Oh, Jung-Hwan;Cho, Ik-Hwan;Jang, Seok-Jea;Kim, Ji-Hae;Park, Sang-Min;Park, Ju-Hyun;Chung, Hyen-Mi;Ahn, Tae-Young;Jheong, Weonhwa
    • Korean Journal of Microbiology
    • /
    • v.49 no.4
    • /
    • pp.313-320
    • /
    • 2013
  • Biofilm formed on stainless and copper in water treatment plant was investigated for sixteen weeks. Biofilm reactor was specially designed for this study. It was similar to that of a real distribution pipe. Raw water, coagulated, settled, filtered and treated water were used in this study. The average number of heterotrophic bacteria counts was $1.6{\times}10^4CFU/ml$, $5.8{\times}10^3CFU/ml$, $1.8{\times}10^3CFU/ml$, $1.3{\times}10^2CFU/ml$, 1 CFU/ml, respectively. Density of biofilm bacteria formed on stainless and copper pipes in raw, coagulated and settled water increased above $2.9{\times}10^3CFU/cm^2$ within second weeks while more biofilm bacteria counts were found on the stainless pipe than on the copper pipe. In case of filtered water (free residue chlorine 0.44 mg/L), there was no significant difference in the number of biofilm bacteria on both pipes and biofilm bacteria below $18CFU/cm^2$ were detected on both pipe materials after fifth weeks. Biofilm bacteria were not detected on both pipe materials in treated water (free residue chlorine 0.88 mg/L). According to the results of DGGE analysis, Sphingomonadacae was a dominant species of biofilm bacteria formed on the stainless pipe while the copper pipe had Bradyrhizobiaceae and Sphingomonadaceae as dominant bands. In case of filtered water, a few bands (similar to Propionibacterium sp., Sphingomonas sp., Escherichia sp., and etc.) that have 16S rRNA sequences were detected in biofilm bacteria formed on both pipes after fifth weeks. Stainless pipe had higher species richness and diversity than the copper pipe.

FEA of Pipe Rolling Process Using Planetary Rolling Mill for Stainless Steel (유성압연기를 사용한 스테인리스 강관 압연공정의 유한요소해석)

  • Lee, Jung-Kil;Kim, Kwan-Woo;Cho, Hae-Yong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.244-251
    • /
    • 2011
  • Pipe rolling process using the planetary rolling mill for AISI 304 stainless steel has been studied by using finite element method. Mannesmann method using three-roll is applied to this rolling process. Commonly, rolling process has started from the cold working and finished to the hot working. This rolling process has more advantage that make reduction of process and cost than existing extrusion process. This process includes various and complex process parameters. Each of the process parameters affects forming result. Therefore, all of the process parameters should be considered in FEA. In this study, possibility and productivity of forming pipe for AISI 304 stainless steel had been investigated. Also, preheating process and variations of rotation velocity and product thickness were considered in FEA. Rolling process for AISI 304 stainless steel pipe was successfully simulated and it should be useful to determine optimal rolling condition.

Prediction of fatigue crack initiation life in SA312 Type 304LN austenitic stainless steel straight pipes with notch

  • Murthy, A. Ramachandra;Vishnuvardhan, S.;Anjusha, K.V.;Gandhi, P.;Singh, P.K.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1588-1596
    • /
    • 2022
  • In the nuclear power plants, stainless steel is widely used for fabrication of various components such as piping and pipe fittings. These piping components are subjected to cyclic loading due to start up and shut down of the nuclear power plants. The application of cyclic loading may lead to initiation of crack at stress raiser locations such as nozzle to piping connection, crown of piping bends etc. of the piping system. Crack initiation can also take place from the flaws which have gone unnoticed during manufacturing. Therefore, prediction of crack initiation life would help in decision making with respect to plant operational life. The primary objective of the present study is to compile various analytical models to predict the crack initiation life of the pipes with notch. Here notch simulates the stress raisers in the piping system. As a part of the study, Coffin-Manson equations have been benchmarked to predict the crack initiation life of pipe with notch. Analytical models proposed by Zheng et al. [1], Singh et al. [2], Yang Dong et al. [25], Masayuki et al. [33] and Liu et al. [3] were compiled to predict the crack initiation life of SA312 Type 304LN stainless steel pipe with notch under fatigue loading. Tensile and low cycle fatigue properties were evaluated for the same lot of SA312 Type 304LN stainless steel as that of pipe test. The predicted crack initiation lives by different models were compared with the experimental results of three pipes under different frequencies and loading conditions. It was observed that the predicted crack initiation life is in very good agreement with experimental results with maximum difference of ±10.0%.