• Title/Summary/Keyword: stainless mesh

검색결과 80건 처리시간 0.022초

스테인레스 스틸 와이어 메쉬 보강에 따른 교각의 연성능력 평가 (Evaluation of Ductility for Bridge Piers Retrofitted by Stainless Steel Wire Mesh)

  • 김성훈;김대곤;이규남;김선호;김석희
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.879-884
    • /
    • 2002
  • The objective of this study is to investigate the seismic capacity of the non-seismically detailed RC bridge piers before and after applying a seismic retrofitting method using stainless steel wire mesh. Total nine circular section RC piers were constructed. Different lap splice longitudinal reinforcement details were adapted for four specimens and various types of stainless steel wire mesh were applied for the remaining five specimens. Harmonic cyclic lateral load was applied on each specimen under a constant axial load. The test results indicated that the existing circular piers have low seismic capacity while the stainless steel wire mesh retrofitting method improves the seismic capacity considerably. In addition, test results revealed that the circular section piers could have a considerable amount of ductility if longitudinal bars are not lap-spliced in potential plastic hinge zone. Based on this experimental study it could be concluded that the seismic performance, that is ductility and energy absorption capacity, of the non-seismically detailed RC bridge piers would be increased by applying the stainless steel wire mesh seismic retrofitting method.

  • PDF

방사선가교로 제조된 폴리아크릴산 코팅 스테인리스그물망에 의한 유수 분리 (Separation of Water and Oil by Poly(acrylic acid)-coated Stainless Steel Mesh Prepared by Radiation Crosslinking)

  • 노영창;신정웅;박종석;임윤묵;전준표;강필현
    • 방사선산업학회지
    • /
    • 제9권2호
    • /
    • pp.77-84
    • /
    • 2015
  • The stainless steel mesh coated with poly(acrylic acid) hydrogel was fabricated and applied for the separation of water and oil. The stainless steel mesh was immersed in aqueous poly (acrylic acid) solution, and then irradiated by radiation to introduce poly(acrylic acid) hydrogel on the surface of mesh by crosslinking. It was possible to separate oil and water from mixtures of oil/water effectively using the hydrogel-coated mesh. The effect of irradiation dose, coating thickness, size of mesh on the separation efficiency was examined.

스테인리스 스틸 촉매 상에서 아세틸렌 분해에 의한 VGCF 나노물질의 성장 형태 연구 - 환원 전처리 및 수소공급 효과 (A Study on the Growth Morphology of VGCF Nano-Materials by Acetylene Pyrolysis over Stainless Steel Catalyst - Effect of Reduction Pretreatment and Hydrogen Supply)

  • 박석주;이동근
    • Korean Chemical Engineering Research
    • /
    • 제44권6호
    • /
    • pp.563-571
    • /
    • 2006
  • 스테인리스 스틸 메쉬 표면을 환원 전처리하여 그 표면상에 직접 탄소나노튜브 또는 탄소나노섬유와 같은 VGCF (vapor grown carbon fiber) 나노물질을 합성 성장시켰다. 수소 가스를 이용하여 스테인리스 스틸 메쉬를 환원 처리함으로써, 금속 표면상에 bi-modal 분포의 작은 촉매입자와 큰 촉매입자들이 함께 생성되었다. 환원된 스테인리스 스틸 메쉬로부터 VGCF의 합성 시, 수소 가스가 공급되지 않은 경우는 작은 촉매입자로부터 탄소나노튜브들이 주로 성장되었으나, 특정 량의 수소 가스가 공급될 경우 큰 촉매입자로부터 탄소나노섬유들이 주로 성장되었다.

전기화학 에칭 공정을 이용한 스테인리스 스틸 메쉬의 방수 특성 연구 (A Study on Water-Proof Characteristics of a Stainless Steel Mesh by Electrochemical Etching Process)

  • 이찬;김지민;김형모
    • Tribology and Lubricants
    • /
    • 제37권5호
    • /
    • pp.189-194
    • /
    • 2021
  • A straightforward, yet effective surface modification method of stainless steel mesh and its interesting anti-wetting characteristics are reported in this study. The stainless steel mesh is electrochemically etched, and the specimen has both micro and nano-scale structures on its surface. This process transforms the two types of mesh specimens known as the regular and dense specimens into hydrophobic specimens without applying any hydrophobic chemical coating process. The fundamental wettability of the modified mesh is analyzed through a dedicatedly designed experiment to investigate the waterproof characteristics, for instance, the penetration threshold. The waterproof characteristics are evaluated in a manner that the modified mesh resists as high as approximately 2.7 times the pressure compared with the bare mesh, i.e., the non-modified mesh. The results show that the penetration threshold depends primarily on the advancing contact angles, and the penetration stop behaviors are affected by the contact angle hysteresis on the surfaces. The findings further confirm that the inexpensive waterproof meshes created using the proposed straightforward electrochemical etching process are effective and can be adapted along with appropriate designs for various practical applications, such as underwater devices, passive valves, and transducers. In general, , additional chemical coatings are applied using hydrophobic materials on the surfaces for the applications that require water-repelling capabilities. Although these chemical coatings can often cause aging, the process proposed in this study is not only cost-effective, but also durable implying that it does not lose its waterproof properties over time.

Strengthening of axially loaded concrete columns using stainless steel wire mesh (SSWM)-numerical investigations

  • Kumar, Varinder;Patel, P.V.
    • Structural Engineering and Mechanics
    • /
    • 제60권6호
    • /
    • pp.979-999
    • /
    • 2016
  • Stainless steel wire mesh (SSWM) is an alternative material for strengthening of structural elements similar to fiber reinforced polymer (FRP). Finite element (FE) method based Numerical investigation for evaluation of axial strength of SSWM strengthened plain cement concrete (PCC) and reinforced cement concrete (RCC) columns is presented in this paper. PCC columns of 200 mm diameter with height 400 mm, 800 mm and 1200 mm and RCC columns of diameter 200 mm with height of 1200 mm with different number of SSWM wraps are considered for study. The effect of concrete grade, height of column and number of wraps on axial strength is studied using finite element based software ABAQUS. The results of numerical simulation are compared with experimental study and design guidelines specified by ACI 440.2R-08 and CNR-DT 200/2004. As per numerical analysis, an increase in axial capacity of 15.69% to 153.95% and 52.39% to 109.06% is observed for PCC and RCC columns respectively with different number of SSWM wraps.

Highly Flexible Dye-sensitized Solar Cell Prepared on Single Metal Mesh

  • Yun, Min Ju;Cha, Seung I.;Seo, Seon Hee;Lee, Dong Y.
    • Current Photovoltaic Research
    • /
    • 제2권3호
    • /
    • pp.79-83
    • /
    • 2014
  • Dye-sensitized solar cells (DSSCs) are applied in the emerging fields of building integrated photovoltaic and electronics integrated photovoltaic like small portable power sources as demands are increased with characteristic advantages. Highly flexible dye-sensitized solar cells (DSSCs) prepared on single stainless steel mesh were proposed in this paper. Single mesh DSSCs structure utilizing the spraying the chopped glass paper on the surface treated stainless steel mesh for integrating the space element and the electrode components, counter electrode component and photoelectrode component were coated on each side of the single mesh. The fabricated single mesh DSSCs showed the energy-conversion efficiency 0.50% which show highly bendable ability. The new single mesh DSSCs may have potential applications as highly bendable solar cells to overcome the limitations of TCO-based DSSCs.

Ti 보호층이 형성된 스테인레스 스틸 메쉬 전극을 이용한 염료감응형 태양전지의 전기 화학적 특성 개선 (Enhanced Electrochemical Properties of Dye-sensitized Solar Cells Using Flexible Stainless Steel Mesh Electrodes with Ti Protective Layer)

  • 정행윤;기현철;구할본
    • 한국전기전자재료학회논문지
    • /
    • 제28권3호
    • /
    • pp.180-184
    • /
    • 2015
  • Stainless steel (SS) mesh was used to fabricate photoelectrode for flexible dye-seisitzed solar cells (DSSCs) in order to evaluate them as replacements for more expensive transparent conductive oxide(TCO). We fabricated the DSSCs with new type of photoelectrode, which consisted of flexible SS mesh coated with 100 nm thickness titanium (Ti) protective layer deposited using electron-beam deposition system. SS mesh DSSCs with protective layer showed higher efficiency than those without a protective layer. The best cell property in the present study showed the open circuit voltage (Voc) of 0.608 V, short-circuit current density (Jsc) of $5.73mA\;cm^{-2}$, fill factor (FF) of 65.13%, and efficiency (${\eta}$) of 2.44%. Compared with SS mesh based on DSSCs (1.66%), solar conversion of SS mesh based on DSSCs with protective layer improved about 47%.

Synthesis and characterization of carbon doped TiO2 photocatalysts supported on stainless steel mesh by sol-gel method

  • Tijani, JO.;Fatoba, OO.;Totito, TC.;Roos, WD.;Petrik, LF.
    • Carbon letters
    • /
    • 제22권
    • /
    • pp.48-59
    • /
    • 2017
  • This study synthesized pure anatase carbon doped $TiO_2$ photocatalysts supported on a stainless steel mesh using a sol-gel solution of 8% polyacrylonitrile (PAN)/dimethylformamide (DMF)/$TiCl_4$. The influence of the pyrolysis temperature and holding time on the morphological characteristics, particle sizes and surface area of the prepared catalyst was investigated. The prepared catalysts were characterized by several analytical methods: high resolution scanning electron microscopy (HRSEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), and X-ray photoelectron spectroscopy (XPS). The XRD patterns showed that the supported $TiO_2$ nanocrystals are typically anatase, polycrystalline and body-centered tetragonal in structure. The EDS and XPS results complemented one another and confirmed the presence of carbon species in or on the $TiO_2$ layer, and the XPS data suggested the substitution of titanium in $TiO_2$ by carbon. Instead of using calcination, PAN pyrolysis was used to control the carbon content, and the mesoporosity was tailored by the applied temperature. The supported $TiO_2$ nanocrystals prepared by pyrolysis at 300, 350, and $400^{\circ}C$ for 3 h on a stainless steel mesh were actual supported carbon doped $TiO_2$ nanocrystals. Thus, $PAN/DMF/TiCl_4$ offers a facile, robust sol-gel related route for preparing supported carbon doped $TiO_2$ nanocomposites.

Fabrication of a Superhydrophobic Water-Repellent Mesh for Underwater Sensors

  • An, Taechang
    • 센서학회지
    • /
    • 제22권2호
    • /
    • pp.100-104
    • /
    • 2013
  • A superhydrophobic mesh is a unique structure that blocks water, while allowing gases, sound waves, and energy to pass through the holes in the mesh. This mesh is used in various devices, such as gas- and energy-permeable waterproof membranes for underwater sensors and electronic devices. However, it is difficult to fabricate micro- and nano-structures on three-dimensional surfaces, such as the cylindrical surface of a wire mesh. In this research, we successfully produced a superhydrophobic water-repellent mesh with a high contact angle (> $150^{\circ}$) for nanofibrous structures. Conducting polymer (CP) composite nanofibers were evenly coated on a stainless steel mesh surface, to create a superhydrophobic mesh with a pore size of $100{\mu}m$. The nanofiber structure could be controlled by the deposition time. As the deposition time increased, a high-density, hierarchical nanofiber structure was deposited on the mesh. The mesh surface was then coated with Teflon, to reduce the surface energy. The fabricated mesh had a static water contact angle of $163^{\circ}$, and a water-pressure resistance of 1.92 kPa.

일체형 산화철 촉매를 전극으로 하는 전기펜톤산화법 (An Electro-Fenton System Using Magnetite Coated One-body Catalyst as an Electrode)

  • 최윤정;주재백;김상훈
    • 공업화학
    • /
    • 제29권1호
    • /
    • pp.117-121
    • /
    • 2018
  • 하폐수 고도산화처리(AOP, advanced oxidation process) 중 하나인 펜톤산화법과 전기화학적 방법을 결합한 전기펜톤산화법의 cathode에 stainless steel mesh (SUS mesh)를 적용하였다. 난분해성 물질인 염료 methylene blue (MB) 용액에 대해서, SUS mesh의 표면 처리 및 산화철 코팅 여부에 따라 전기펜톤산화 처리의 효율이 어떻게 달라지는지를 비교, 분석하였다. MB분해 반응의 효율 비교를 통해 mesh 표면에 코팅된 산화철의 양이 많을수록 전극의 촉매 특성이 높아짐을 확인하였고, 이는 전극표면에서 in situ로 발생하는 과산화수소의 발생량이 높아지는 것과 연관이 있었다. 전류-전위 순환법(CV)을 통해 개발된 전극의 전기화학적 특성을 평가해 본 결과, mesh 표면에 코팅된 산화철의 양이 많을수록 전기화학적 산화-환원 특성 또한 개선되었고, 이것이 우수한 전기펜톤산화 전극으로서의 성능과 밀접한 관계가 있음을 확인하였다.