• Title/Summary/Keyword: stagnation zone

Search Result 37, Processing Time 0.022 seconds

The Change of Flow depending upon the Discharge and Approaching Angle at Channel Junctions (합류부의 유량 및 접근각도에 따른 흐름변화)

  • Choi, Gye-Woon;Park, Young-Suop;Han, Man-Shin
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.8
    • /
    • pp.623-630
    • /
    • 2004
  • In this paper, the hydraulic model tests are conducted for the hydraulic characteristics at channel junctions. The experiments are examined through the variation of approaching angle, discharge in the upstream main channel and the discharge ratio between the main channel and the tributary. The experiments are conducted in the channel model having the length of 450cm, the widths of 40cm and 32cm. Four water tanks and pumps are installed in the experimental channel. The length of stagnation zone is increased by Increasing of approaching angle and the discharge in the upstream channel. The length of stagnation increase with the discharge ratio between the main channel and the tributary. However, the variation of the stagnation zone near the channel junctions is little at the same approaching angles and the discharge ratioes between the main channel and tributary. However, the variation of the stagnation zone near the channel junctions is little at the same approaching angles and the discharge ratioes between the main channel and tributary. Accelerating zone of the velocity is occurred in the middle of the channel in the small approaching angle. However, the influence zone of the accelerating velocity is increased by increasing the approaching angle.

Analytical Surge Behaviors in Systems of a Single-stage Axial Flow Compressor and Flow-paths

  • Yamaguchi, Nobuyuki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.1
    • /
    • pp.1-16
    • /
    • 2016
  • Behaviors of surges appearing near the stall stagnation boundaries in various fashions in systems of a single-stage compressor and flow-path systems were studied analytically and were tried to put to order. Deep surges, which enclose the stall point in the pressure-mass flow plane, tend to have either near-resonant surge frequencies or subharmonic ones. The subharmonic surge is a multiple-loop one containing, for example, in a (1/2) subharmonic one, a deep surge loop and a mild surge loop, the latter of which does not enclose the stall point, staying only within the stalled zone. Both loops have nearly equal time periods, respectively, resulting in a (1/2) subharmonic surge frequency as a whole. The subharmonic surges are found to appear in a narrow zone neighboring the stall stagnation boundary. In other words, they tend to appear in the final stage of the stall stagnation process. It should be emphasized further that the stall stagnation initiates fundamentally at the situation where a volume-modified reduced resonant-surge frequency becomes coincident with that for the stagnation boundary conditions, where the reduced frequency is defined by the acoustical resonance frequency in the flow-path system, the delivery flow-path length and the compressor tip speed, modified by the sectional area ratio and the effect of the stalling pressure ratio. The real surge frequency turns from the resonant frequency to either near-resonant one or subharmonic one, and finally to stagnation condition, for the large-amplitude conditions, caused by the non-linear self-excitation mechanism of the surge.

Analysis of Hydraulic Characteristics Depending Upon the Geometrical and Discharge Condition at Channel Junctions (하도 합류부의 기하학적 특성과 유량조건에 따른 수리학적 특성 해석)

  • Ahn, Seung-Seop;Choi, Soo-Chul;Yim, Dong-Hee
    • Journal of Environmental Science International
    • /
    • v.16 no.4
    • /
    • pp.495-503
    • /
    • 2007
  • In this study, we took the geometrical character of the river channel junction and hydrologic conditions as independent variables, and hydraulic behavior characteristics as an independent variable. The result, after multiple analysis was carried out, proved that, except for the generating area of the accelerating zone of velocity the accelerating zone and both the main channel and the tributary zone of stagnation the stagnation zone, there was correlation of over 90%. Also, derived presumed expression of the hydraulic characteristics of the junction was applied to the real natural channel - the river channel of the Guem-ho main channel(the A-yang bridge to the Guem-ho bridge). As the result, it proved that it represented hydraulic characteristics relatively well.

Impact assessment to the Water Environmental and Biodiversity on the Constant Stagnation Zone by River Floating Debris (하천 부유 쓰레기 상습 정체 구간의 수환경 및 생물다양성 영향 평가)

  • Kim, Heung-Min;Bak, Su-Ho;Jang, Seon-Woong;Kwak, Seok Nam;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.1
    • /
    • pp.213-220
    • /
    • 2018
  • Investigation and policy related to floating debris are focused on water treatment or disposal costs, and water pollution caused by floating debris has not been evaluated. In this study, it was surveyed the water environment pollution on the stagnation zone by floating debris in Nakdong River basin of Busan Metropolitan City. The water quality of the constant stagnation zone had lower DO than that of the non-stagnation zone. COD and Chl-a showed similar concentrations in the both zones. As a result of the collecting net surveys which were kept floating during 3 months, the most abundant species(4 species) of arthropods appeared, and Chironomidae sp. is dominant. It was also resistant to the deteriorated water quality, and emerged as a Lepomis macrochirus on the stagnant waters with a slowly flow rate.

Analytical Study on Stall Stagnation Boundaries in Axial-Flow Compressor and Duct Systems

  • Yamaguchi, Nobuyuki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.2
    • /
    • pp.56-74
    • /
    • 2013
  • Stall stagnations in the system of axial-flow compressors and ducts occur in transition from deep surge conditions to decayed or converged stall conditions. The present study is concerned with the boundaries between the deep surges and the stagnation stalls on the basis of analytical results by a code on surge transients analysis and simulation. The fundamental acoustical-geometrical stagnation boundaries were made clear from examinations of the results on a variety of duct configurations coupled with a nine-stage compressor and a single stage fan. The boundary was found to be formed by three parts, i.e., B- and A-boundaries, and an intermediate zone. The B-boundary occurs for the suction-duct having a length of about a quarter of the wave-length of the first resonance in the case of very short and fat plenum-type delivery duct. On the other hand, the A-boundary occurs for the long and narrow duct-type delivery flow-path having a length about a fifth of the wavelength and relatively small sectional area in the case of short and narrow suction ducts. In addition to this, the reduced surge-cycle frequencies with respect to the duct lengths are observed to have respective limiting values at the stagnation boundaries. The reduced frequency for the B-boundary is related with a limiting value of the Greitzer's B parameter. The tendency and the characteristic features of the related flow behaviors in the neighborhood of the boundaries were also made clearer.

The influence of water characteristics on the aquatic insect and plant assemblage in small irrigation ponds in Civilian Control Zone, Korea (민통선 둠벙의 수서곤충과 식물 군집에 대한 수환경 특성의 영향)

  • Kim, Jae Hyun;Chung, Hyun Yong;Kim, Seoung Ho;Kim, Jae Geun
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.331-341
    • /
    • 2016
  • A small irrigation pond for a rice paddy field is a very important refuge for aquatic insects and plants. To reveal environmental factors determining species composition of aquatic insect and plant communities, we analyzed water chemistry and connection between pond and surrounding in five types of irrigation ponds based on water source and connection in CCZ of South Korea: stagnation, exchange-stagnation, spring, stagnation-spring, and exchange-spring types. The stagnation type had the most stable water chemistry among the 16 irrigation ponds studied, and the spring type had the most variable water chemistry. Anion content was highest in the stagnation type, and cation content was highest in the exchange-stagnation type. 228 taxa including 63 wetland plants and 95 aquatic insect taxa were recorded. Six rare plant species and four rare aquatic insect species were identified. The stagnation-spring type had the highest species richness. There was no correlation between size and species richness. Multivariate analyses showed distinctive species assemblages among the irrigation pond types. This would indicate that water chemical change at annual cycle and connection influenced on the species assemblages in irrigation pond. In additional, irrigation pond contributes to regional biodiversity in agricultural areas, as irrigation pond provides heterogeneous communities for the freshwater ecosystem.

A Study on the Fundamental Surge Frequencies in Multi-Stage Axial Flow Compressor Systems

  • Yamaguchi, Nobuyuki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.4
    • /
    • pp.160-173
    • /
    • 2014
  • Surge phenomena in multi-stage axial flow compressors were studied with attention to the frequency behaviors. A new parameter "volume-modified reduced surge frequency" was introduced, which took into consideration the essential surge process, i.e., emptying and filling of the working gas in the delivery plenum. The behaviors of the relative surge frequencies at the stall stagnation boundaries, compared with the corresponding duct resonance frequencies, have demonstrated the existence of two types of surges; i.e., a near-resonant surge and a subharmonic surge. The former, which has fundamentally a near-resonance frequency, occurs predominantly at the stall stagnation boundary for the short -and-fat plenum delivery flow-path and the long-and-narrow delivery duct flow-path, and possibly in the intermediate conditions. The latter, which has a subharmonic frequency of the fundamental near-resonant one and occurs mainly in the intermediate zone, is considered to be caused by the reduced frequency restricted to a limited range. In relation with those dimensionless frequencies at the stall stagnation boundary, the surge frequency behaviors in more general situations away from the boundaries could be estimated, though very roughly.

Acoustic Response of Hydrogen/Liquid Oxygen Flame in Stagnation-Point Flow (정체점 유동장에서 수소-액체산소 화염의 음향파 응답 특성)

  • Park, Sung-Woo;Chung, Suk-Ho;Kim, Hong-Jip
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.440-446
    • /
    • 2003
  • Steady-state structure and acoustic pressure responses of GH$_2$-LOx diffusion flames in stagnation-point flow configuration have been studied numerically with a detailed chemistry to investigate the acoustic instabilities. The Rayleigh criterion is adopted to judge the instability of the GH$_2$-LOx flames from amplification and attenuation responses at various acoustic pressure oscillation conditions for near-equilibrium to near-extinction regimes. Steady state flame structure showed that the chain branching zone is embedded in surrounding two recombination zones. The acoustic responses of GH$_2$-LOx flame showed that the responses in near-extinction regime always have amplification effect regardless of realistic acoustic frequency. That is, GH$_2$-LOx flame near-extinction is much sensitive to pressure perturbation because of the strong effect of a finite-chemistry.

Effect of Co-firing PKS and Coal on Flame Structure in a Pulverized Coal Swirl Burner (미분탄 스월버너에서 PKS와 석탄 혼소가 화염 구조에 미치는 영향)

  • Shin, Minho;Sung, Yonmo;Choi, Minsung;Lee, Gwangsu;Choi, Gyungmin;Kim, Duckjool
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.4
    • /
    • pp.30-38
    • /
    • 2016
  • Flame structure of co-firing coal and palm kernel shell (PKS) was investigated in a pulverized coal swirl burner by particle image velocimetry (PIV). The pulverized coal swirl flame is operated with a PKS blending ratio of 10%, 20%, and 30%. For all operating conditions, flame structures such as internal recirculation zone (IRZ), outer recirculation zone (ORZ), and exhaust tube vortex (ETV) were observed. In the center of flame, the strong velocity gradient is occurred at the stagnation point where the volatile gas combustion actively takes place and the acceleration is increased with higher PKS blending ratio. OH radical shows the burned gas region at the stagnation point and shear layer between IRZ and ORZ. In addition, OH radical intensity increases for a co-firing condition because of high volatile matter from PKS. Because the volatile gas combustion takes place at lower temperature, co-firing condition (more than 20%) leads to oxygen deficiency and reduces the combustibility of coal particle near the burner. Therefore, increasing PKS blending ratio leads to higher OH radical intensity and lower temperature.

Effects of supersonic condensing nozzle flow on oblique shock wave (超音速 노즐흐름에 있어서 凝縮이 傾斜衝擊波에 미치는 影響)

  • 강창수;권순범
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.547-553
    • /
    • 1989
  • Last several stages of high capacity fossil power steam turbine and most stages of nuclear power steam turbine operate on wet steam. As a consequence, the flows in those cascades are accompanied by condensation, and the latent heat caused by condensation affects an oblique shock wave being generated at the vicinity of trailing of the blade. In the case of expanding of moist air through a suction type indraft wind tunnel, the effect of condensation affection the oblique shock wave generated by placing the small wedge into the supersonic part of the nozzle was investigated experimentally. In these connections, the relationship between condensation zone and reflection point of the incident oblique shock wave, angle between wedge bottom wall and oblique shock wave, and the variations of angles of incident and reflected shock waves due to the variation of initial stagnation relative humidity are discussed. Furthermore, the relationship between initial stagnation relative humidity and load working on the nozzle wall, obtained by measuring static pressure at the nozzle centerline, is discussed.