• Title/Summary/Keyword: stages of reproductive cycle

Search Result 196, Processing Time 0.03 seconds

Gomphina (Macridiscus) veneriformis (Lamark, 1818) (Bivalvia: Veneridae) in the East Sea of Korea

  • Kim, Yong Ho;Kim, Sung Han;Chung, Ee-Yung;Lee, Chang-Hoon;Kwak, Cheol Woo
    • The Korean Journal of Malacology
    • /
    • v.29 no.4
    • /
    • pp.313-323
    • /
    • 2013
  • Gonad development, the reproductive cycle, first sexual maturty and size at 50% of group sexual maturity (the biological minimum size) of Gomphina (Macridiscus) veneriformis were investigated for clams collected from the coastal waters of Donghae City, the East Sea of Korea by histological, and morphometric analysis. Monthly variations of the gonad index showed a pattern similar to that of the reproductive cycle. The reproductive cycle with the gonad developmental stages in female and male G. (M.) veneriformis can be classified into five successive stages: early active stage (December to March), late active stage (March to June), ripe stage (June to July), partially spawned stage (June to August), and spent / inactive stage (September to December). The spawning period continued from June to August, with a peak between July and August when the seawater temperature exceeds $20^{\circ}C$. The percentages of first sexual maturities of female and male clams ranging from 25.1 to 30.0 mm were 56.3% in females and 61.1% in males, and for clams over 30.1 mm shell length, it was 100%. Shell lengths at 50% of group sexual maturity (biological minimum size, $RM_{50}$) were 27.71 mm in females and 26.31 mm in males. Because harvesting clams < 26.31 mm in shell length could potentially cause a drastic reduction in recruitment, a measure indicating a prohibitory fishing size should be taken for adequate fisheries management.

Annual Reproductive cycle of the File Fish, Thamnaconus modestus, on the Southern Coast of Cheju Island (제주 남부 연안 말쥐치, Thamnaconus modestus의 생식년주기)

  • Lee, Seung-Jong;Go, You-Bong;Lee, Young-Don;Jung, Ji-Hyun;Han, Chang-Hee
    • Korean Journal of Ichthyology
    • /
    • v.12 no.1
    • /
    • pp.71-84
    • /
    • 2000
  • Annual reproductive cycle of the file fish, Thamnaconus modestus (Gunther), was histologically investigated. Samples were collected monthly in the coastal waters of Chungmun, south of Cheju Island, Korea from July 1997 to June 1999. In males and females of T. modestus GSI values reached the maximum in June and May, respectively. Reproductive cycle could be divided into the following successive stages: in females, growing stage (March to April), mature stage (April to May), spawning stage (May to June), degenerative and resting stage (July to February), and in males, growing stage (January to March), mature stage (April to May), spent stage (May to June), degenerative and resting stage (July to December), respectively. To clarify the spawning cycle of female in T. modestus, some were examined, that is, the weekly changes of GSI, detail developmental stages in the ovary and the weekly changes of sex steroid hormones ($E_2$ and T) levels in plasma during the spawning period. Throughout histological observation of the ovary during the spawning period, T. modestus belonged to an asynchronous and multiple spawner. Changes of plasma $E_2$ and T levels were similar to the changes of GSI and ovary maturity.

  • PDF

Seasonal Changes in Biochemical Components of the Adductor Muscle and Visceral Mass Tissues in the Female Cyclina sinensis, in Relation to Gonad Developmental Phases (암컷 가무락조개, Cyclina sinensis의 난소 발달단계에 따른 폐각근 조직과 내장낭 조직의 생화학적 성분의 계절적 변화)

  • Chung, Ee-Yung;Park, Kwan-Ha;Kim, Jong-Bae;Lee, Chang-Hoon
    • The Korean Journal of Malacology
    • /
    • v.20 no.1
    • /
    • pp.85-92
    • /
    • 2004
  • We investigated the reproductive cycle with gonadal development of the female Cyclina sinensis by histological observations and seasonal changes in biochemical components of the adductor muscle and visceral mass tissues were studied by biochemical analysis, from January to December, 2001. The reproductive cycle of this species can be classified into five successive stages: early active stage (February to April), late active stage (March to June), ripe stage (May to August), partially spawned stage (July to October) and spent/inactive stage (September to February). Total protein contents in the adductor muscle tissues reached the maximum in February (early active stage) and appeared the minimum in June (ripe stage), while their contents in the visceral mass tissues reached the maximum in the late active and ripe stages (June) and gradually decreased from July (partially spawned stage) to November (spent/inactive stage). Changes in total protein contents showed a negative correlationship between the adductor muscle and visceral mass tissues (r = -0.499, p = 0.099). Total lipid contents in the adductor muscle tissues reached the maximum in January (the inactive stages) and their contents gradually decreased from February. Their contents in the visceral mass tissues, however, reached the maximum in June (late active and ripe stage) and gradually decreased from July (the partially spawned stage). On the whole, total lipid contents showed a negative correlationship between the adductor muscle and visceral mass tissues (r = -0.631, p < 0.05). Therefore, These results indicate that the nutrient contents of the adductor muscle and visceral muscle tissues change in response to gonadal energy needs. Glycogen contents in the adductor muscle tissue reached the maximum in March (early and late active stages) and decreased from July to September (partially spawned stage). while their contents in the visceral mass tissues reached the maximum in June (late active and ripe stages) and gradually decreased from July (partially spawned stage). Thereafter, their levels gradually increased in November (spent/inactive stage). On the whole, changes in glycogen contents appeared negative correlationship between the adductor muscle and visceral mass tissues. However, they showed no significant different (r = -0.307, p = 0.331).

  • PDF

Gonadal Maturation and Main Spawning Period of Haliotis gigantea (Gastropoda: Haliotidae)

  • Shin, So Ryung;Kim, Hyeon Jin;Lee, Dong Han;Kim, Hyejin;Sohn, Young Chang;Kim, Jae Won;Lee, Jung Sick
    • Development and Reproduction
    • /
    • v.24 no.2
    • /
    • pp.79-88
    • /
    • 2020
  • This study was carried out to obtain information on the developmental biology and the management of biological resources of the abalone Haliotis gigantea in Korea. The sex ratio (female:male) in the present study was 1:1.7 and the proportion of females was 36.6% (n=106/290). Their gonadal structures displayed definitive seasonal changes which were similar in pattern to the changes in the gonad index (GI). The GI showed a pattern of definitive seasonal changes in both males and females it was high in the fall and low in the spring. The reproductive cycle could be categorized into the following six stages: inactive, early active, late active, ripe, spent, and degenerative stage. Based on the monthly changes in GI and stages of gonadal development, October to November was determined to be the main spawning period for H. gigantea on Jeju Island, Korea.

Cyclic Expression of Cyclooxygenase-l and -2 in Human Endometrium (인간 자궁내막에서 Cyclooxygenase-1과 -2의 주기적 발현 양상)

  • Park, Dong-Wook;Yang, Hyun-Won;Kwon, Hyuek-Chan;Hwang, Kyung-Joo;Yoo, Jung-Hyun;Lee, Chi-Hyeong;Kim, Sei-Kwang;Cho, Dong-Jea;Oh, Kie-Suk
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.25 no.1
    • /
    • pp.25-33
    • /
    • 1998
  • Cyclooxygenase (COX) is an enzyme involved in the conversion of arachidonic acid to prostaglandins (PGs), and exists in two forms, COX-1 and COX-2. COX has been reported to be involved in early implantation by secretion of PGs which causes permeability of vessels and reaction of decidual cells around the implantation site. Recently, in mice and sheep studies, COX-1 and COX-2 expression in the endometrium has been reported to be different according to implantation and stages of the estrous cycle, but expression of COX-1 and COX-2 in human endometrium during the menstrual cycle has not yet been established. The purpose of this study was to observe the variances of COX-1 and COX-2 expression by immunohistochemical staining in endometrial samples obtained from human hysterectomy specimens and biopsies of women of reproductive age according to different stages of the menstrual cycle. Also, we attempted to observe COX-1 and COX-2 expression in the epithelial and stromal cells of the endometrium obtained during the mid-secretory phase, which were cultured separately. COX-2 showed a cyclic pattern of expression according to the different stages of the menstrual cycle and was strongly expressed particularly at the mid-secretory phase which corresponds to the time of implantation. However, COX-1 tended to be increased in the early proliferative, and mid- and late secretory phases, but was also expressed in the whole menstrual cycle showing no particular pattern. In the separately cultured cells COX-1 was expressed in epithilial cells and COX-2 in the stromal cells. The above results suggest that since COX-2 is expressed at the same time as implantation and cultured cells display a specific secretory pattern, COX-2 has inductive endocrine enzyme properties and has an important effect on endometrial cells during implantation. Also, COX-2 expression in endometrial cells may be utilized as a useful marker of endometrial maturation.

  • PDF

Testicular Development of the Male Lungfish, Protopterus annectens (OWEN) (Pisces: Sarcopterygii) in the Flood Plains of River Niger in Udaba-Ekperi in Nigeria

  • Onyedineke, N.-E.;Otuogbai, T.-O.-S.;Elakhame, L.-A.;Ofoni, C.
    • Journal of Aquaculture
    • /
    • v.14 no.2
    • /
    • pp.73-79
    • /
    • 2001
  • Testicular development of the male African lungfish, Protopterus annectens (Owen) was investigated histologically. The testis was found to be an elongated structure that possessed two distinct portions: an anterior spermatogenic part that was made up of a system of testicular tubules and a posterior vesicular part that invaded the kidney tissue. Spermatogenesis can be divided into five stages; primary spermatogonia, secondary spermatogonia, spermatocyte, spermatids and spermatozoa. Based on the gonadosomatic index (GSI) and histological changes observed, the reproductive cycle can be divided onto four distinct stages: resting and quiescent (December to February), growing (March to June) ripe and spent (July to August) and postspawning (September to November). The GSI was the maximum on July when reproductive cells were mature, ripe and ready for spawning; and the minimum in August after fish spawned.

  • PDF

Gametogenesis and Reproductive Cycle of the Murex Shell Ceratostoma rorifluum(Neogastropoda: Muricidae) (패류 맵사리(Ceratostoma rorifluum)의 생식세포형성과 생식주기)

  • Lee, Ju-Ha
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.41 no.4
    • /
    • pp.253-260
    • /
    • 2008
  • Gonadal development, gametogenesis, reproductive cycle, spawning, relative weight of flesh, and onset of sexual maturity of the murex shell, Ceratostoma rorifluum, collected from the rocky intertidal zone of Daehang-ri, Buan-gun, Jeollabuk-do, Korea were investigated monthly from January to December 2005 both cytologically and histologically. The gonads were widely placed on the digestive gland located in the posterior spiral fleshy part in the shell. C. rorifluum had separate sexes, and was an internal fertilizer. The sex ratio of females to males was approximately 1:1. The ovary and testis contained a great number of oogenic follicles and spermatogenic tubules, respectively. The oogonia and fully ripe oocytes were $15-19{\mu}m$ and $150-160{\mu}m$ in diameter, respectively, and the cytoplasm of the ripe oocytes contained a number of yolk granules. The relative weight of flesh reached a maximum in August($39.35{\pm}0.40%$), and then decreased rapidly in November($32.75{\pm}1.20%$). The percentages of female and male snails at first sexual maturity with shell heights ranging from 12.1-14.0 mm were 60.0% and 52.9%, respectively, while 100% of the snails of both sexes with shell heights over 18.1 mm were reproductively active. Based on the gonadal development and histological observations, the reproductive cycle of the snail could be categorized into five successive stages: early active(December to May), late active(March to July), ripe(June to September), spawning(July to October), and recovery(October to March). C. rorifluum spawned once a year between July and October, and the majority of spawning occurred in September when the seawater temperature exceeded $23.5^{\circ}C$.

Ultrastructure of Germ Cell during Spermatogenesis and the Reproductive Cycle of the Hanging Cultured Male Scallop Patinopecten yessoensis (Pelecypoda:Pectinidae) on the East Coast of Korea

  • Park, Young-Je;Chung, Ee-Yung;Lee, Jeong-Yong;Park, Kwang-Jae
    • The Korean Journal of Malacology
    • /
    • v.22 no.1 s.35
    • /
    • pp.39-49
    • /
    • 2006
  • Ultrastructure of germ cell differentiation during supermatogenesis and the reproductive cycle in male Patinopecten yessoensis was studied by histological and cytological observations. The gonadosomatic index (GSI) in males rapidly increased and reached a maximum in April when seawater temperature gradually increased. Then the GSI gradually decreased from May through July when spawning occurred. Accordingly, monthly changes in the GSI in males coincided with testicular maturation and spawning periods. The sperm morphology of P. yessoensis belongs to the primitive type and showed general characteristics of external fertilization species. The head of the spermatozoon is approximately $3.50{\mu}m$ in length: the sperm nucleus and acrosome are approximately $2.90{\mu}m\;and\;0.60{\mu}m$ in length, respectively. The nuclear type of the spermatozoon is vase in shape, and the acrosome is cone type. The axoneme of the tail flagellum consists of nine pairs of microtubules at the periphery and a pair of central microtubules in the center The satellite body (which is formed by the centriole) and four mitochondria appear in the middle piece of the spermatozoon. The spawning period was from April through July and the main spawning occurred from May to June when seawater temperatures gradually increased. The reproductive cycle of this species can be classified into five successive stages; early active stage (September to November), late active stage (October to March), ripe stage (February to August), spawning stage (April to July), and spent/inactive stage (July to November).

  • PDF

Annual Reproductive cycle of the File Fish, Stephanolepis cirrhifer, on the Southern Coast of Cheju Island (제주 남부 연안 쥐치, Stephanolepis cirrhifer의 생식년주기)

  • Lee, Seung-Jong;Go, You-Bong;Lee, Young-Don
    • Korean Journal of Ichthyology
    • /
    • v.12 no.1
    • /
    • pp.62-70
    • /
    • 2000
  • Annual reproductive cycle of the file fish, Stephanolepis cirrhifer (Temminck et Schlegel), was histologically investigated. Samples were collected monthly in the coastal waters of Chungmun, south of Cheju Island, Korea from July 1997 to June 1999. In males and females of S. cirrhifer, the values of GSI (gonadosomatic index) were similar to the changes of water temperature and day length. GSI values in males and females were reached the maximum in June. Reproductive cycle could be divided into the following successive stages: in females, growing stage (February to May), mature stage (May to June), spawning stage (June to August), degenerative and resting stage (September to December), and in males, growing stage (February to April), mature stage (May to June), spent stage (June to August), degenerative and resting stage (September to January), respectively. Throughout histological observation of the ovary in the spawning period, the species belong to an asynchronous and multiple spawner.

  • PDF

Gonadal Development and Reproductive Cycle of the Granular Ark Tegillarca granosa (Bivalvia: Arcidae) (꼬막 Tegillarca granosa의 생식소 발달과 생식주기)

  • Kim, Sung-Yeon;Moon, Tae-Seok;Shin, Yun-Kyung;Park, Mi-Seon
    • Journal of Aquaculture
    • /
    • v.22 no.1
    • /
    • pp.34-41
    • /
    • 2009
  • Gonadal development and reproductive cycle of the granular ark Tegillarca granosa were investigated by histological observations. Samples were collected monthly from January to Decemberry 2002 in the Yeoja Bay of Yeosu, Jeollanam-do, Korea. T. granosa was dioecious. The gonads consist of a number of oogenic follicle and acinus. Monthly changes in the gonad index reached a maximum in June and a minimum in August. Monthly changes in the condition index reached a maximum in July and a minimum in September. The reproductive cycle of this species can be divided into five successive stages: early active stage (March to May), late active stage (April to June), ripe stage (May to July), spent stage (July to August) and recovery and resting stage (September to March). The spawning of T. granosa occurred in July and August in Yeoja Bay. The sex ratio of female to male was not significantly different from 1:1.