• Title/Summary/Keyword: stage combustion

Search Result 321, Processing Time 0.027 seconds

Measurements of Equivalence Ratio in the Spark Plug Gap and Its-Effects on Combustion Under Stratified Mixture Conditions in a Constant Volume Chamber (정적 연소실에서 성층화된 혼합기 조건하의 점화 전극사이 당량비 측정과 연소 특성에 미치는 영향)

  • Bae, Sang-Su;Lee, Gi-Cheol;Min, Gyeong-Deok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1311-1317
    • /
    • 2001
  • To investigate only the effects of the stratified mixture distribution on initial flame propagation and combustion characteristics, the instantaneous equivalence ratio in the spark plug gap and combustion pressure were measured simultaneously In a constant volume chamber, To induce the stratified propane-air mixture distribution near the spark plug, counter-flow typed mixture injection system was used under the constant mean equivalence ratio $\Phi$$\_$mean/= 1.0 The instantaneous equivalence ratio was measured by a single-shot Raman scattering with narrow-band KrF excimer laser. The measuring error was within the limit of $\pm$ 3.5% provided that the proposed method was applied to the measured Raman signals. Judging from mass fraction burned derived from the measured pressure, the optimum combustion characteristics were shown under the condition that the local equivalence ratio in the spark plug was near 1.28$\pm$0.04, and these characteristics were more remarkable at the initial stage of combustion.

The Effect of Multiple Injections on the Stability of Combustion and Emissions Characteristic in a Passenger Car Diesel Engine (승용차 디젤엔진의 연료 다단 분사가 연소 안정 및 배출물 특성에 미치는 영향)

  • Roh, Hyun-Gu;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.76-82
    • /
    • 2007
  • This paper described the effect of the multiple injections on the stability of combustion and emission characteristics in a direct injection diesel engine at various operating conditions. In order to investigate the influence of multiple injections in a diesel engine, the fuel injection timing was varied one main injection and two pilot injections at various conditions. The experimental apparatus consisted of DI diesel engine with four cylinders, EC dynamometer, multi-stage injection control system, and exhaust emissions analyzer. The combustion and emission characteristics were analyzed for the main, pilot-main injection, pilot-pilot-main injection strategies. It is revealed that the combustion pressure was smoothly near the top dead center and the coefficient of variations is reduced due to the effect of pilot injection. Also, $NO_x$ emissions are dramatically decreased with pilot injection because the decrease of rate of heat release. However, the soot is increased at early pilot injection and main injection.

Development Status and Plan of the High Performance Upper Stage Engine for a GEO KSLV (정지궤도위성용 한국형 우주발사체를 위한 고성능 상단 엔진 개발 현황 및 계획)

  • Yu, Byungil;Lee, Kwang-Jin;Woo, Seongphil;Im, Ji-Hyuk;So, Younseok;Jeon, Junsu;Lee, Jungho;Seo, Daeban;Han, Yeoungmin;Kim, Jinhan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.125-130
    • /
    • 2018
  • The technology development of a high performance upper stage engine for a GEO(GEostationary Orbit) KSLV(Korea Space Launch Vehicle) is undergoing in Korea Aerospace Research Institute. KSLV is composed of an open cycle engine with gas generator, which is for a low orbit launch vehicle. However the future GEO launch vehicle requires a high performance upper stage engine with a high specific impulse. The staged combustion cycle engine is necessary for this mission. In this paper, current progress and future plan for staged combustion cycle engine development is described.

Fire Characteristics of Flaming and Smoldering Combustion of Wood Combustibles Considering Thickness (목재 가연물의 두께에 따른 화염연소와 훈소상태에서의 화재특성)

  • Kim, Sung-Chan;Nam, Dong-Gun
    • Fire Science and Engineering
    • /
    • v.29 no.4
    • /
    • pp.67-72
    • /
    • 2015
  • A series of fire tests was conducted to examine the fire characteristics of flaming and smoldering combustion of engineered wood products, which have been widely used for furniture and finishing materials in buildings. The engineered wood products of MDF, plywood, and chipboard were ignited by a radiant cone heater with incident heat flux of $50kW/m^2$. During the fire test, key parameters representing the fire characteristics such as the heat release rate, yield rate of combustion product, and effective heat of combustion were quantified in terms of thickness. The tests show two peak points of HRRPUA due to lateral fire propagation in the initial stage, followed by later fire penetration through the specimen thickness. The mass loss rate of flaming combustion was 5 times higher than that of smoldering combustion, while the CO yield rate of smoldering combustion was 10 times higher than that of flaming combustion. This study can contribute to the understanding of fire behavior of wood combustibles and provide useful data for fire analysis.

Combustion Characteristics of Orifice Size of Torch in a CVCC (토치 점화 장치의 오리피스 직경에 따른 연소특성 파악)

  • Kwon, Soon-Tae;Kim, Hyeong-Sig;Choi, Chang-Hyeon;Park, Chan-Jun;Ohm, In-Young
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2010.04a
    • /
    • pp.59-63
    • /
    • 2010
  • Seven different size of orifice were applied in a constant volume combustion chamber for evaluating the effects of torch-ignition on combustion. The initial flame development and flame propagation were analyzed by the mass fraction burn and combustion enhancement rate. The combustion pressures were measured to calculate the mass fraction burn and the combustion enhancement rates. In addition, the flame propagations were visualized by the shadowgraph method for the qualitative comparison. The result showed that the combustion pressure and mass burned fraction were increased when using the torch-ignition device. The combustion enhancement rates of torch-ignition cases were improved in comparison with conventional spark ignition. Finally, the visualization results showed that the torch-ignition induced faster burn than conventional spark ignition due to the earlier transition to turbulent flame and larger flame surface, during the initial stage.

  • PDF

A Study on Combustion Process of Biodiesel Fuel using Swirl Groove Piston (Swirl Groove Piston에 의한 바이오 디젤연료의 연소과정에 관한 연구)

  • Bang, Joong-Cheol;Kim, Sung-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.105-113
    • /
    • 2009
  • The performance of a direct-injection type diesel engine often depends on the strength of swirl or squish, shape of combustion chamber, the number of nozzle holes, etc. This is of course because the combustion in the cylinder was affected by the mixture formation process. In this paper, combustion process of biodiesel fuel was studied by employing the piston which has several grooves with inclined plane on the piston crown to generate swirl during the compression stroke in the cylinder in order to improve the atomization of high viscosity fuel such as biodiesel fuel and toroidal type piston generally used in high speed diesel engine. To take a photograph of flame, single cylinder, four stroke diesel engine was remodeled into two stroke visible engine and high speed video camera was used. The results obtained are summarized as follows; (1) In the case of toroidal piston, when biodiesel fuel was supplied to plunger type injection system which has very low injection pressure as compared with common-rail injection system, the flame propagation speed was slowed and the maximum combustion pressure became lower. These phenomena became further aggravated as the fuel viscosity gets higher. (2) In the case of swirl groove piston, early stage of combustion such as rapid ignition timing and flame propagation was activated by intensifying the air flow in the cylinder. (3) Combustion process of biodiesel fuel was improved by the reason mentioned in paragraph (2) above. Consequently, the swirl grooves would also function to improve the combustion of high viscosity fuel.

An Experimental Study of Combustion Characteristics in a Model Gas Turbine Combustor (모형 가스터빈 연소기의 기초 연소특성에 대한 실험적 연구)

  • Lee, Jang-Su;Kim, Min-Ki;Park, Sung-Soon;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.263-266
    • /
    • 2009
  • The mainly objectives of this study was a combustion dynamics and instability characteristics in a model gas turbine dump combustor which is the scale down of GE 7FA+e DLN 2.6 gas turbine combustor. Model gas turbine injector has 2-stage swirl vane and it’s reduced 1/3 size of the original one. The shape of plenum and combustor were designed for similar acoustic characteristics. Inlet air was preheated to $200{\sim}400^{\circ}C$. The flow velocity at mixing nozzle was 30 to 75 m/s and equivalent ratio was 0.4 to 1.2. The combustor length was varied for different acoustic characteristics to $375{\sim}700\;mm$. As the result, this research have been show the combustion instability was observed at lower equivalence ratios ($\Phi$ < $0.5{\sim}0.6$) and higher equivalent ratios ($\Phi$ > $1.1{\sim}1.2$).

  • PDF

The Effect of Mixing Rate and Multi Stage Injection on the Internal Flow Field and Combustion Characteristics of DISI Engine Using Methanol-gasoline Blended Fuel at High Speed / High Load Condition (고속 고부하 상태의 DISI 엔진에서 메탄올-가솔린 혼합연료의 연료 혼합비와 2단 분사가 엔진 내부유동 및 연소특성에 미치는 영향)

  • Bae, Jinwoo;Seo, Juhyeong;Lee, Jae Seong;Kim, Ho Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.15-24
    • /
    • 2013
  • Numerical studies were conducted to investigate the internal flow field and combustion characteristics of DISI engine with methanol blended in gasoline. Dual injection was applied and the characteristics were compared to single injection strategy. The amount of the fuel injection was corresponded to air-fuel ratio of each fuel for complete combustion. The preforming model in this study, software STAR-CD was employed for both modeling and solving. The operating speed condition were at 4000 rpm/WOT (Wide open throttle) where the engine was fully warmed. The results of single injection with M28 showed that the uniformity, equivalence ratio, in-cylinder pressure and temperature increased comparing to gasoline (M0). When dual injection was applied, there was no significant change in uniformity and equivalence ratio but the in-cylinder pressure and temperature increased. When M28 fuel and single injection was applied, the CO (Carbon monoxide) and NO (Nitrogen oxides) emission inside the combustion chamber increased approximately 36%, 9% comparing with benchmarking case in cylinder prior to TWC (Three Way Catalytic converter). When dual stage injection was applied, both CO and NO emission amount increased.

Acoustic Damping Swirl Injector for Reduction of Combustion Instability (연소불안정 저감을 위한 음향학적 감쇠기능성 스월 인젝터)

  • Kim, Hyun-Sung;Kim, Byung-Sun;Kim, Dong-Jun;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.7-12
    • /
    • 2007
  • Swirl injector with multi-stage tangential entry was analyzed to suppress high-frequency combustion instability in Liquid Rocket Engines. In order to analyze the effect of swirl injector as an acoustic absorber, swirl injector was regarded as a quarter-wave resonator and it's damping capacity is verified in atmospheric temperature. It has a finite mode of vibration and natural frequencies which can be tuned to the natural frequencies of a model combustion chamber. When the targeted injector for each modes is located at anti-node point, the amplitude of modes was decreased. And when the injector of large diameter is mounted, the split of mode which accompanies the decrease of amplitude appeared. From the experimental data, it is proved that if the location of injector mounted is located at an anti-node position of the targeted modes with proper volume, the amplitude of modes is decreased and the split of modes occurs at anti-node point.

  • PDF

A Study on Detoxication of Coal Briquette by Additives (첨가제에 의한 연탄제독에 관한 연구)

  • Chang Tuwon;Young Sun Uh;Youn Soo Sohn
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.118-125
    • /
    • 1986
  • A small scale combustion unit was built to evaluate the CO suppression effects by various chemical additives added to coal briquettes. Among the additives tested comprising various transition metal compounds with catalytic activities, natural minerals and oxidizing agents, the copper component has shown the best CO suppression effect, and in particular, copper oxide dispersed on porous supports such as ${\gamma}-Al_2O_3$ was most effective. For instance, 0.5% of copper added to coal briquettes in this way bas exhibited 1.4 % CO in the combustion gas at the ignition and beginning stage of combustion and 0.3 % CO at the final stage. The effects of calcium compounds on the fixation of sulfur in coal were also evaluated to reduce the contents of sulfur compounds in the combustion gases.

  • PDF