• 제목/요약/키워드: stacked

Search Result 1,133, Processing Time 0.021 seconds

Predicting the Effects of Agriculture Non-point Sources Best Management Practices (BMPs) on the Stream Water Quality using HSPF (HSPF를 이용한 농업비점오염원 최적관리방안에 따른 수질개선효과 예측)

  • Kyoung-Seok Lee;Dong Hoon Lee;Youngmi Ahn;Joo-Hyon Kang
    • Journal of Wetlands Research
    • /
    • v.25 no.2
    • /
    • pp.99-110
    • /
    • 2023
  • Non-point source (NP) pollutants in an agricultural landuse are discharged from a large area compared to those in other land uses, and thus effective source control measures are needed. To develop appropriate control measures, it is necessary to quantify discharge load of each source and evaluate the degree of water quality improvement by implementing different options of the control measures. This study used Hydrological Simulation Program-FORTRAN (HSPF) to quantify pollutant discharge loads from different sources and effects of different control measures on water quality improvements, thereby supporting decision making in developing appropirate pollutant control strategies. The study area is the Gyeseong river watershed in Changnyeong county, Gyeongsangnam-do, with agricultural areas occupying the largest proportion (26.13%) of the total area except for the forest area. The main pollutant sources include chemical and liquid fertilizers for agricultural activities, and manure produced from small scale livestock facilities and applied to agriculture lands or stacked near the facilities. Source loads of chemical fertilizers, liquid fertilizers and livestock manure of small scale livestock facilities, and point sources such as municipal wastewater treatment plants (WWTPs), community WWTPs, private sewage treament plants were considered in the HSPF model setup. Especially, NITR and PHOS modules were used to simulate detailed fate and transport processes including vegitation uptake, nutrient deposition, adsorption/desorption, and loss by deep percolation. The HSPF model was calibrated and validated based on the observed data from 2015 to 2020 at the outlet of the watershed. The calibrated model showed reasonably good performance in simulating the flow and water quality. Five Pollutants control scenarios were established from three sectors: agriculture pollution management (drainge outlet control, and replacement of controlled release fertilizers), livestock pollution management (liquid fertilizer reduction, and 'manure management of small scale livestock facilities) and private STP management. Each pollutant control measure was further divided into short-term, mid-term, and long-term scenarios based on the potential achievement period. The simulation results showed that the most effective control measure is the replacement of controlled release fertilizers followed by the drainge outlet control and the manure management of small scale livestock facilities. Furthermore, the simulation showed that application of all the control measures in the entire watershed can decrease the annual TN and TP loads at the outlet by 40.6% and 41.1%, respectively, and the annual average concentrations of TN and TP at the outlet by 35.1% and 29.2%, respectively. This study supports decision makers in priotizing different pollutant control measures based on their predicted performance on the water quality improvements in an agriculturally dominated watershed.

Sequence Stratigraphy of the Yeongweol Group (Cambrian-Ordovician), Taebaeksan Basin, Korea: Paleogeographic Implications (전기고생대 태백산분지 영월층군의 순차층서 연구를 통한 고지리적 추론)

  • Kwon, Y.K.
    • Economic and Environmental Geology
    • /
    • v.45 no.3
    • /
    • pp.317-333
    • /
    • 2012
  • The Yeongweol Group is a Lower Paleozoic mixed carbonate-siliciclastic sequence in the Taebaeksan Basin of Korea, and consists of five lithologic formations: Sambangsan, Machari, Wagok, Mungok, and Yeongheung in ascending order. Sequence stratigraphic interpretation of the group indicates that initial flooding in the Yeongweol area of the Taebaeksan Basin resulted in basal siliciclastic-dominated sequences of the Sambangsan Formation during the Middle Cambrian. The accelerated sea-level rise in the late Middle to early Late Cambrian generated a mixed carbonate-siliciclastic slope or deep ramp sequence of shale, grainstone and breccia intercalations, representing the lower part of the Machari Formation. The continued rise of sea level in the Late Cambrian made substantial accommodation space and activated subtidal carbonate factory, forming carbonate-dominated subtidal platform sequence in the middle and upper parts of the Machari Formation. The overlying Wagok Formation might originally be a ramp carbonate sequence of subtidal ribbon carbonates and marls with conglomerates, deposited during the normal rise of relative sea level in the late Late Cambrian. The formation was affected by unstable dolomitization shortly after the deposition during the relative sea-level fall in the latest Cambrian or earliest Ordovician. Subsequently, it was extensively dolomitized under the deep burial diagenetic condition. During the Early Ordovician (Tremadocian), global transgression (viz. Sauk) was continued, and subtidal ramp deposition was sustained in the Yeongweol platform, forming the Mungok Formation. The formation is overlain by the peritidal carbonates of the Yeongheung Formation, and is stacked by cyclic sedimentation during the Early to Middle Ordovician (Arenigian to Caradocian). The lithologic change from subtidal ramp to peritidal facies is preserved at the uppermost part of the Mungok Formation. The transition between Sauk and Tippecanoe sequences is recognized within the middle part of the Yeongheung Formation as a minimum accommodation zone. The global eustatic fall in the earliest Middle Ordovician and the ensuing rise of relative sea level during the Darrwillian to Caradocian produced broadly-prograding peritidal carbonates of shallowing-upward cyclic successions within the Yeongheung Formation. The reconstructed relative sea-level curve of the Yeongweol platform is very similar to that of the Taebaek platform. This reveals that the Yeongweol platform experienced same tectonic movements with the Taebaek platform, and consequently that both platform sequences might be located in a body or somewhere separately in the margin of the North China platform. The significant differences in lithologic and stratigraphic successions imply that the Yeongweol platform was much far from the Taebaek platform and not associated with the Taebaek platform as a single depositional system. The Yeongweol platform was probably located in relatively open shallow marine environments, whereas the Taebaek platform was a part of the restricted embayments. During the late Paleozoic to early Mesozoic amalgamations of the Korean massifs, the Yeongweol platform was probably pushed against the Taebaek platform by the complex movement, forming fragmented platform sequences of the Taebaeksan Basin.

Dosimetric evaluation of using in-house BoS Frame Fixation Tool for the Head and Neck Cancer Patient (두경부암 환자의 양성자 치료 시 사용하는 자체 제작한 BoS Frame 고정장치의 선량학적 유용성 평가)

  • Kim, kwang suk;Jo, kwang hyun;Choi, byeon ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.1
    • /
    • pp.35-46
    • /
    • 2016
  • Purpose : BoS(Base of Skull) Frame, the fixation tool which is used for the proton of brain cancer increases the lateral penumbra by increasing the airgap (the distance between patient and beam jet), due to the collision of the beam of the posterior oblique direction. Thus, we manufactured the fixation tool per se for improving the limits of BoS frame, and we'd like to evaluate the utility of the manufactured fixation tool throughout this study. Materials and Methods : We've selected the 3 patients of brain cancer who have received the proton therapy from our hospital, and also selected the 6 beam angles; for this, we've selected the beam angle of the posterior oblique direction. We' ve measured the planned BoS frame and the distance of Snout for each beam which are planned for the treatment of the patient using the BoS frame. After this, we've proceeded with the set-up that is above the location which was recommended by the manufacturer of the BoS frame, at the same beam angle of the same patient, by using our in-house Bos frame fixation tool. The set-up was above 21 cm toward the superior direction, compared to the situation when the BoS frame was only used with the basic couch. After that, we've stacked the snout to the BoS frame as much as possible, and measured the distance of snout. We've also measured the airgap, based on the gap of that snout distance; and we've proceeded the normalization based on each dose (100% of each dose), after that, we've conducted the comparative analysis of lateral penumbra. Moreover, we've established the treatment plan according to the changed airgap which has been transformed to the Raystation 5.0 proton therapy planning system, and we've conducted the comparative analysis of DVH(Dose Volume Histogram). Results : When comparing the result before using the in-house Bos frame fixation tool which was manufactured for each beam angle with the result after using the fixation tool, we could figure out that airgap than when not used in accordance with the use of the in-house Bos frame fixation tool was reduced by 5.4 cm ~ 15.4 cm, respectively angle. The reduced snout distance means the airgap. Lateral Penumbra could reduce left, right, 0.1 cm ~ 0.4 cm by an angle in accordance with decreasing the airgap while using each beam angle in-house Bos frame fixation tool. Due to the reduced lateral penumbra, Lt.eyeball, Lt.lens, Lt. hippocampus, Lt. cochlea, Rt. eyeball, Rt. lens, Rt. cochlea, Rt. hippocampus, stem that can be seen that the dose is decreased by 0 CGE ~ 4.4 CGE. Conclusion : It was possible to reduced the airgap by using our in-house Bos frame fixation tool for the proton therapy; as a result, it was possible to figure out that the lateral penumbra reduced. Moreover, it was also possible to check through the comparative analysis of the treatment plan that when we reduce the lateral penumbra, the reduction of the unnecessary irradiation for the normal tissues. Therefore, Using the posterior oblique the Brain cancer proton therapy should be preceded by decreasing the airgap, by using our in-house Bos frame fixation tool; also, the continuous efforts for reducing the airgap as much as possible for the proton therapy of other area will be necessary as well.

  • PDF