• Title/Summary/Keyword: stable algorithm

Search Result 1,326, Processing Time 0.025 seconds

Relationships Among Employees' IT Personnel Competency, Personal Work Satisfaction, and Personal Work Performance: A Goal Orientation Perspective (조직구성원의 정보기술 인적역량과 개인 업무만족 및 업무성과 간의 관계: 목표지향성 관점)

  • Heo, Myung-Sook;Cheon, Myun-Joong
    • Asia pacific journal of information systems
    • /
    • v.21 no.4
    • /
    • pp.63-104
    • /
    • 2011
  • The study examines the relationships among employee's goal orientation, IT personnel competency, personal effectiveness. The goal orientation includes learning goal orientation, performance approach goal orientation, and performance avoid goal orientation. Personal effectiveness consists of personal work satisfaction and personal work performance. In general, IT personnel competency refers to IT expert's skills, expertise, and knowledge required to perform IT activities in organizations. However, due to the advent of the internet and the generalization of IT, IT personnel competency turns out to be an important competency of technological experts as well as employees in organizations. While the competency of IT itself is important, the appropriate harmony between IT personnel's business capability and technological capability enhances the value of human resources and thus provides organizations with sustainable competitive advantages. The rapid pace of organization change places increased pressure on employees to continually update their skills and adapt their behavior to new organizational realities. This challenge raises a number of important questions concerning organizational behavior? Why do some employees display remarkable flexibility in their behavioral responses to changes in the organization, whereas others firmly resist change or experience great stress when faced with the need to alter behavior? Why do some employees continually strive to improve themselves over their life span, whereas others are content to forge through life using the same basic knowledge and skills? Why do some employees throw themselves enthusiastically into challenging tasks, whereas others avoid challenging tasks? The goal orientation proposed by organizational psychology provides at least a partial answer to these questions. Goal orientations refer to stable personally characteristics fostered by "self-theories" about the nature and development of attributes (such as intelligence, personality, abilities, and skills) people have. Self-theories are one's beliefs and goal orientations are achievement motivation revealed in seeking goals in accordance with one's beliefs. The goal orientations include learning goal orientation, performance approach goal orientation, and performance avoid goal orientation. Specifically, a learning goal orientation refers to a preference to develop the self by acquiring new skills, mastering new situations, and improving one's competence. A performance approach goal orientation refers to a preference to demonstrate and validate the adequacy of one's competence by seeking favorable judgments and avoiding negative judgments. A performance avoid goal orientation refers to a preference to avoid the disproving of one's competence and to avoid negative judgements about it, while focusing on performance. And the study also examines the moderating role of work career of employees to investigate the difference in the relationship between IT personnel competency and personal effectiveness. The study analyzes the collected data using PASW 18.0 and and PLS(Partial Least Square). The study also uses PLS bootstrapping algorithm (sample size: 500) to test research hypotheses. The result shows that the influences of both a learning goal orientation (${\beta}$ = 0.301, t = 3.822, P < 0.000) and a performance approach goal orientation (${\beta}$ = 0.224, t = 2.710, P < 0.01) on IT personnel competency are positively significant, while the influence of a performance avoid goal orientation(${\beta}$ = -0.142, t = 2.398, p < 0.05) on IT personnel competency is negatively significant. The result indicates that employees differ in their psychological and behavioral responses according to the goal orientation of employees. The result also shows that the impact of a IT personnel competency on both personal work satisfaction(${\beta}$ = 0.395, t = 4.897, P < 0.000) and personal work performance(${\beta}$ = 0.575, t = 12.800, P < 0.000) is positively significant. And the impact of personal work satisfaction(${\beta}$ = 0.148, t = 2.432, p < 0.05) on personal work performance is positively significant. Finally, the impacts of control variables (gender, age, type of industry, position, work career) on the relationships between IT personnel competency and personal effectiveness(personal work satisfaction work performance) are partly significant. In addition, the study uses PLS algorithm to find out a GoF(global criterion of goodness of fit) of the exploratory research model which includes a mediating variable, IT personnel competency. The result of analysis shows that the value of GoF is 0.45 above GoFlarge(0.36). Therefore, the research model turns out be good. In addition, the study performs a Sobel Test to find out the statistical significance of the mediating variable, IT personnel competency, which is already turned out to have the mediating effect in the research model using PLS. The result of a Sobel Test shows that the values of Z are all significant statistically (above 1.96 and below -1.96) and indicates that IT personnel competency plays a mediating role in the research model. At the present day, most employees are universally afraid of organizational changes and resistant to them in organizations in which the acceptance and learning of a new information technology or information system is particularly required. The problem is due' to increasing a feeling of uneasiness and uncertainty in improving past practices in accordance with new organizational changes. It is not always possible for employees with positive attitudes to perform their works suitable to organizational goals. Therefore, organizations need to identify what kinds of goal-oriented minds employees have, motivate them to do self-directed learning, and provide them with organizational environment to enhance positive aspects in their works. Thus, the study provides researchers and practitioners with a matter of primary interest in goal orientation and IT personnel competency, of which they have been unaware until very recently. Some academic and practical implications and limitations arisen in the course of the research, and suggestions for future research directions are also discussed.

Ensemble Learning with Support Vector Machines for Bond Rating (회사채 신용등급 예측을 위한 SVM 앙상블학습)

  • Kim, Myoung-Jong
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.29-45
    • /
    • 2012
  • Bond rating is regarded as an important event for measuring financial risk of companies and for determining the investment returns of investors. As a result, it has been a popular research topic for researchers to predict companies' credit ratings by applying statistical and machine learning techniques. The statistical techniques, including multiple regression, multiple discriminant analysis (MDA), logistic models (LOGIT), and probit analysis, have been traditionally used in bond rating. However, one major drawback is that it should be based on strict assumptions. Such strict assumptions include linearity, normality, independence among predictor variables and pre-existing functional forms relating the criterion variablesand the predictor variables. Those strict assumptions of traditional statistics have limited their application to the real world. Machine learning techniques also used in bond rating prediction models include decision trees (DT), neural networks (NN), and Support Vector Machine (SVM). Especially, SVM is recognized as a new and promising classification and regression analysis method. SVM learns a separating hyperplane that can maximize the margin between two categories. SVM is simple enough to be analyzed mathematical, and leads to high performance in practical applications. SVM implements the structuralrisk minimization principle and searches to minimize an upper bound of the generalization error. In addition, the solution of SVM may be a global optimum and thus, overfitting is unlikely to occur with SVM. In addition, SVM does not require too many data sample for training since it builds prediction models by only using some representative sample near the boundaries called support vectors. A number of experimental researches have indicated that SVM has been successfully applied in a variety of pattern recognition fields. However, there are three major drawbacks that can be potential causes for degrading SVM's performance. First, SVM is originally proposed for solving binary-class classification problems. Methods for combining SVMs for multi-class classification such as One-Against-One, One-Against-All have been proposed, but they do not improve the performance in multi-class classification problem as much as SVM for binary-class classification. Second, approximation algorithms (e.g. decomposition methods, sequential minimal optimization algorithm) could be used for effective multi-class computation to reduce computation time, but it could deteriorate classification performance. Third, the difficulty in multi-class prediction problems is in data imbalance problem that can occur when the number of instances in one class greatly outnumbers the number of instances in the other class. Such data sets often cause a default classifier to be built due to skewed boundary and thus the reduction in the classification accuracy of such a classifier. SVM ensemble learning is one of machine learning methods to cope with the above drawbacks. Ensemble learning is a method for improving the performance of classification and prediction algorithms. AdaBoost is one of the widely used ensemble learning techniques. It constructs a composite classifier by sequentially training classifiers while increasing weight on the misclassified observations through iterations. The observations that are incorrectly predicted by previous classifiers are chosen more often than examples that are correctly predicted. Thus Boosting attempts to produce new classifiers that are better able to predict examples for which the current ensemble's performance is poor. In this way, it can reinforce the training of the misclassified observations of the minority class. This paper proposes a multiclass Geometric Mean-based Boosting (MGM-Boost) to resolve multiclass prediction problem. Since MGM-Boost introduces the notion of geometric mean into AdaBoost, it can perform learning process considering the geometric mean-based accuracy and errors of multiclass. This study applies MGM-Boost to the real-world bond rating case for Korean companies to examine the feasibility of MGM-Boost. 10-fold cross validations for threetimes with different random seeds are performed in order to ensure that the comparison among three different classifiers does not happen by chance. For each of 10-fold cross validation, the entire data set is first partitioned into tenequal-sized sets, and then each set is in turn used as the test set while the classifier trains on the other nine sets. That is, cross-validated folds have been tested independently of each algorithm. Through these steps, we have obtained the results for classifiers on each of the 30 experiments. In the comparison of arithmetic mean-based prediction accuracy between individual classifiers, MGM-Boost (52.95%) shows higher prediction accuracy than both AdaBoost (51.69%) and SVM (49.47%). MGM-Boost (28.12%) also shows the higher prediction accuracy than AdaBoost (24.65%) and SVM (15.42%)in terms of geometric mean-based prediction accuracy. T-test is used to examine whether the performance of each classifiers for 30 folds is significantly different. The results indicate that performance of MGM-Boost is significantly different from AdaBoost and SVM classifiers at 1% level. These results mean that MGM-Boost can provide robust and stable solutions to multi-classproblems such as bond rating.

Development of JPEG2000 Viewer for Mobile Image System (이동형 의료영상 장치를 위한 JPEG2000 영상 뷰어 개발)

  • 김새롬;정해조;강원석;이재훈;이상호;신성범;유선국;김희중
    • Progress in Medical Physics
    • /
    • v.14 no.2
    • /
    • pp.124-130
    • /
    • 2003
  • Currently, as a consequence of PACS (Picture Archiving Communication System) implementation many hospitals are replacing conventional film-type interpretations of diagnostic medical images with new digital-format interpretations that can also be saved, and retrieve However, the big limitation in PACS is considered to be the lack of mobility. The purpose of this study is to determine the optimal communication packet size. This was done by considering the terms occurred in the wireless communication. After encoding medical image using JPGE2000 image compression method, This method embodied auto-error correction technique preventing the loss of packets occurred during wireless communication. A PC class server, with capabilities to load, collect data, save images, and connect with other network, was installed. Image data were compressed using JPEG2000 algorithm which supports the capability of high energy density and compression ratio, to communicate through a wireless network. Image data were also transmitted in block units coeded by JPEG2000 to prevent the loss of the packets in a wireless network. When JPGE2000 image data were decoded in a PUA (Personal Digital Assistant), it was instantaneous for a MR (Magnetic Resonance) head image of 256${\times}$256 pixels, while it took approximately 5 seconds to decode a CR (Computed Radiography) chest image of 800${\times}$790 pixels. In the transmission of the image data using a CDMA 1X module (Code-Division Multiple Access 1st Generation), 256 byte/sec was considered a stable transmission rate, but packets were lost in the intervals at the transmission rate of 1Kbyte/sec. However, even with a transmission rate above 1 Kbyte/sec, packets were not lost in wireless LAN. Current PACS are not compatible with wireless networks. because it does not have an interface between wired and wireless. Thus, the mobile JPEG2000 image viewing system was developed in order to complement mobility-a limitation in PACS. Moreover, the weak-connections of the wireless network was enhanced by re-transmitting image data within a limitations The results of this study are expected to play an interface role between the current wired-networks PACS and the mobile devices.

  • PDF

Development of Convertor supporting Multi-languages for Mobile Network (무선전용 다중 언어의 번역을 지원하는 변환기의 구현)

  • Choe, Ji-Won;Kim, Gi-Cheon
    • The KIPS Transactions:PartC
    • /
    • v.9C no.2
    • /
    • pp.293-296
    • /
    • 2002
  • UP Link is One of the commercial product which converts HTML to HDML convertor in order to show the internet www contents in the mobile environments. When UP browser accesses HTML pages, the agent in the UP Link controls the converter to change the HTML to the HDML, I-Mode, which is developed by NTT-Docomo of Japan, has many contents through the long and stable commercial service. Micro Explorer, which is developed by Stinger project, also has many additional function. In this paper, we designed and implemented WAP convertor which can accept C-HTML contents and mHTML contents. C-HTML format by I-Mode is a subset of HTML format, mHTML format by ME is similar to C-HTML, So the content provides can easily develop C-HTML contents compared with WAP and the other case. Since C-HTML, mHTML and WML are used under the mobile environment, the limited transmission capacity of one page is also similar. In order to make a match table. After that, we apply conversion algorithm on it. If we can not find matched element, we arrange some tags which only can be supported by WML to display in the best shape. By the result, we can convert over 90% contents.

Development of Cloud and Shadow Detection Algorithm for Periodic Composite of Sentinel-2A/B Satellite Images (Sentinel-2A/B 위성영상의 주기합성을 위한 구름 및 구름 그림자 탐지 기법 개발)

  • Kim, Sun-Hwa;Eun, Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.989-998
    • /
    • 2021
  • In the utilization of optical satellite imagery, which is greatly affected by clouds, periodic composite technique is a useful method to minimize the influence of clouds. Recently, a technique for selecting the optimal pixel that is least affected by the cloud and shadow during a certain period by directly inputting cloud and cloud shadow information during period compositing has been proposed. Accurate extraction of clouds and cloud shadowsis essential in order to derive optimal composite results. Also, in the case of an surface targets where spectral information is important, such as crops, the loss of spectral information should be minimized during cloud-free compositing. In thisstudy, clouds using two spectral indicators (Haze Optimized Tranformation and MeanVis) were used to derive a detection technique with low loss ofspectral information while maintaining high detection accuracy of clouds and cloud shadowsfor cabbage fieldsin the highlands of Gangwon-do. These detection results were compared and analyzed with cloud and cloud shadow information provided by Sentinel-2A/B. As a result of analyzing data from 2019 to 2021, cloud information from Sentinel-2A/B satellites showed detection accuracy with an F1 value of 0.91, but bright artifacts were falsely detected as clouds. On the other hand, the cloud detection result obtained by applying the threshold (=0.05) to the HOT showed relatively low detection accuracy (F1=0.72), but the loss ofspectral information was minimized due to the small number of false positives. In the case of cloud shadows, only minimal shadows were detected in the Sentinel-2A/B additional layer, but when a threshold (= 0.015) was applied to MeanVis, cloud shadowsthat could be distinguished from the topographically generated shadows could be detected. By inputting spectral indicators-based cloud and shadow information,stable monthly cloud-free composited vegetation index results were obtained, and in the future, high-accuracy cloud information of Sentinel-2A/B will be input to periodic cloud-free composite for comparison.

A Study on Training Dataset Configuration for Deep Learning Based Image Matching of Multi-sensor VHR Satellite Images (다중센서 고해상도 위성영상의 딥러닝 기반 영상매칭을 위한 학습자료 구성에 관한 연구)

  • Kang, Wonbin;Jung, Minyoung;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1505-1514
    • /
    • 2022
  • Image matching is a crucial preprocessing step for effective utilization of multi-temporal and multi-sensor very high resolution (VHR) satellite images. Deep learning (DL) method which is attracting widespread interest has proven to be an efficient approach to measure the similarity between image pairs in quick and accurate manner by extracting complex and detailed features from satellite images. However, Image matching of VHR satellite images remains challenging due to limitations of DL models in which the results are depending on the quantity and quality of training dataset, as well as the difficulty of creating training dataset with VHR satellite images. Therefore, this study examines the feasibility of DL-based method in matching pair extraction which is the most time-consuming process during image registration. This paper also aims to analyze factors that affect the accuracy based on the configuration of training dataset, when developing training dataset from existing multi-sensor VHR image database with bias for DL-based image matching. For this purpose, the generated training dataset were composed of correct matching pairs and incorrect matching pairs by assigning true and false labels to image pairs extracted using a grid-based Scale Invariant Feature Transform (SIFT) algorithm for a total of 12 multi-temporal and multi-sensor VHR images. The Siamese convolutional neural network (SCNN), proposed for matching pair extraction on constructed training dataset, proceeds with model learning and measures similarities by passing two images in parallel to the two identical convolutional neural network structures. The results from this study confirm that data acquired from VHR satellite image database can be used as DL training dataset and indicate the potential to improve efficiency of the matching process by appropriate configuration of multi-sensor images. DL-based image matching techniques using multi-sensor VHR satellite images are expected to replace existing manual-based feature extraction methods based on its stable performance, thus further develop into an integrated DL-based image registration framework.