• Title/Summary/Keyword: stabilizing agent

Search Result 113, Processing Time 0.024 seconds

Strength evaluation of air cured, cement treated peat with blast furnace slag

  • Kalantari, Behzad
    • Geomechanics and Engineering
    • /
    • v.3 no.3
    • /
    • pp.207-218
    • /
    • 2011
  • This article describes laboratory research done on strength evaluations for stabilized samples made of tropical fibrous peat. The stabilizing agents used were ordinary Portland cement (OPC) as binding agent and blast furnace slag (BFS) as additive. Stabilized samples were tested for their strength through unconfined compressive strength (UCS) and California bearing ratio (CBR). Different dosage rates of OPC and BFS were used in trial and error experiments for the most effective combination for stabilized peat samples that were at their natural moisture content. Stabilized trial samples were air cured for 90 days. After detecting the most effective dosage rate in the trial samples, their values were used to prepare CBR samples at their optimum moisture content (OMC). CBR samples were then air cured from 1 to 90 days and tested under un-soaked and soaked conditions. The most effective dosage rate for the stabilized peat samples was found to be close to when 75% for OPC and 25% of BFS per total weight of OPC, and BFS. As an example, if 11.25% OPC, and 3.75% BFS are mixed with peat and compacted at their OMC and air cured for 90 days, stabilized peat will have an increase in CBR of 0.8% to 45 % for un-soaked and 20% for soaked conditions.

Experimental study of the compressive strength of chemically reinforced organic-sandy soil

  • Hu, Jun;Zhang, Lei;Wei, Hong;Du, Juan
    • Geomechanics and Engineering
    • /
    • v.16 no.3
    • /
    • pp.247-255
    • /
    • 2018
  • Organic-sandy soils that contain abundant organic matters are widely encountered in estuarine cities. Due to the existence of organic matters, the strength and stiffness of this type of soil are significantly low. As a result, various geotechnical engineering problems such as difficulties in piling and constructing embankments and a lack of strength in poured concrete may occur in many estuarine sites; ground improvement such as cement treatment to this type of soils is needed. In this study, laboratory tests were performed to investigate the compressive strength of organic-sandy soil reinforced with primarily cement, in which the influences of several factors, namely types of cement and additional stabilizing agent, cement content, and water-cement ratio, were investigated and the orthogonal experimental design scheme was adopted. Based on the test results, an optimal permutation of these influencing factors is suggested for the reinforcement of organic-sandy soils, which can provide a useful reference for the relevant engineering practice.

Immediate and long-term effects of lime and wheat straw on consistency characteristics of clayey soil

  • Muhammad, Gul;Marri, Amanullah
    • Geomechanics and Engineering
    • /
    • v.16 no.3
    • /
    • pp.217-231
    • /
    • 2018
  • Clayey soils with swelling and shrinkage characteristics have been major causes for many problems in roads, buildings and other civil engineering infrastructure in various areas of Pakistan, particularly where there are several patches of such soils on either side of Indus River. As the consistency characteristics are directly related with the variation of moisture content; therefore, this study was explicitly focused to investigate the effect of lime and wheat straw on the consistency characteristics of clayey soils with relatively high swelling and shrinkage characteristics. The consistency test results indicate that by the increase in lime content there is a decrease in the plasticity index of soil; for instance, 10% lime content resulted to 59% decrease in the plasticity index value. On the other hand; the addition of wheat straw resulted in a significant increase in the plasticity index; for instance, 10% wheat straw content resulted to a 120% increase in the plasticity index. This study has further shown that the shrinkage and swelling of clayey soils which resulting to several problems in the civil engineering infrastructures may adequately be managed through mixing an appropriate amount of lime and wheat straw as soil stabilizing agent for both immediate and long-term effects.

A Study on the Fixation of Heavy Metals with Stabilized Soils in the Landfill Liner (폐기물매립지 차수재로서 고화토의 중금속 고정능력 평가에 관한 연구)

  • 노희정;이재영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.145-149
    • /
    • 2000
  • We performed the geotechnical experiments of the hydraulic conductivity and compressive strength test with the stabilized soil in the laboratory, proved that it is useful to use the stabilized soil as an alternative for natural clay soil. Also, for mixing adding materials in the stabilized soil, it was determined that 1) the optimal mixing ratio of cement : bentonite : stabilizing agent was 90:60:1 of mass ratio(kg) for 1㎥ with soil, 2) it was also possible to use low quality bentonite(B\circled2) classified by swelling grade because of little difference from results of the hydraulic conductivity and compressive strength test with high quality bentonite(B\circled1). According to the results of the fixation ability of heavy metals(Pb$^{2+}$, Cu$^{2+}$, Cd$^{2+}$, Zn$^{2+}$) with soil and additives, authors can conclude that the higher pH condition had the more removal efficiency of heavy metals. B\circled1 and cement had especially high removal efficiency of heavy metals in a whole pH because of high alkalinity.alinity.

  • PDF

Recycling of Wastepaper(X) -Improvement of Fines Fractionation through Multi-Stage Froth-Flotation and Addition of Cationic Polyelectrolyte as a Fractionating Promoter for OCC Flotation- (고지재생연구(제10보) -골판지 고지의 미세분 분급효율 개선을 위한 다단계 부산부유 처리 및 분급 촉진제 적용-)

  • 여성국;류정용;신종호;송봉근
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.32 no.4
    • /
    • pp.27-33
    • /
    • 2000
  • A new technique for fractionating pulp stock into a long fiber portion and fines fraction was developed by KRICT in order to enhance the drainage and strength properties of recycled OCC pulp. In order to investigate the effect of fines contents in stock and stages of flotation on fractionation efficiency, flotations were performed at varied fines contents and flotation stages. Based on the result of multi-stage flotation fractionation it could be said that fines smaller than 15${\mu}{\textrm}{m}$ stabilize flotation froth of OCC. Although the amounts and the fines contents of flotation reject could be increased by multi-stage flotation fractionation of OCC, flotation stages more than 3 times were found to be inefficient in terms of fines concentrating degree. In order to satisfy the both conditions of reducing long fiber loss and of increasing flotation reject, several kinds of fractionating promoters were searched and investigated. And high molecular weight cationic polyacrylamide was chosen as a long fiber flocculating and flotation froth-stabilizing agent.

  • PDF

Thioacetic-Acid Capped PbS Quantum Dot Solids Exhibiting Thermally Activated Charge Hopping Transport

  • Dao, Tung Duy;Hafez, Mahmoud Elsayed;Beloborodov, I.S.;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.457-465
    • /
    • 2014
  • Size-controlled lead sulfide (PbS) quantum dots were synthesized by the typical hot injection method using oleic acid (OA) as the stabilizing agent. Subsequently, the ligand exchange reaction between OA and thioacetic acid (TAA) was employed to obtain TAA-capped PbS quantum dots (PbS-TAA QDs). The condensation reaction of the TAA ligands on the surfaces of the QDs enhanced the conductivity of the PbS-TAA QDs thin films by about 2-4 orders of magnitude, as compared with that of the PbS-OA QDs thin films. The electron transport mechanism of the PbS-TAA QDs thin films was investigated by current-voltage (I-V) measurements at different temperatures in the range of 293 K-473 K. We found that the charge transport was due to sequential tunneling of charge carriers via the QDs, resulting in the thermally activated hopping process of Arrhenius behavior.

Recovery of Ammonium Salt from Nitrate-Containing Water by Iron Nanoparticles and Membrane Contactor

  • Hwang, Yu-Hoon;Kim, Do-Gun;Ahn, Yong-Tae;Moon, Chung-Man;Shin, Hang-Sik
    • Environmental Engineering Research
    • /
    • v.17 no.2
    • /
    • pp.111-116
    • /
    • 2012
  • This study investigates the complete removal of nitrate and the recovery of valuable ammonium salt by the combination of nanoscale zero-valent iron (NZVI) and a membrane contactor system. The NZVI used for the experiments was prepared by chemical reduction without a stabilizing agent. The main end-product of nitrate reduction by NZVI was ammonia, and the solution pH was stably maintained around 10.5. Effective removal of ammonia was possible with the polytetrafluoroethylene membrane contactor system in all tested conditions. Among the various operation parameters including influent pH, concentration, temperature, and contact time, contact time and solution pH showed significant effects on the ammonia removal mechanism. Also, the osmotic distillation phenomena that deteriorate the mass transfer efficiency could be minimized by pre-heating the influent wastewater. The ammonia removal rate could be maximized by optimizing operation conditions and changing the membrane configuration. The combination of NZVI and the membrane contactor system could be a solution for nitrate removal and the recovery of valuable products.

Applications of Air-Foamed Stabilized Soil as Potential Subgrade Material of Railway Track

  • Park, Dae-Wook;Vo, Hai Viet;Lim, Yujin
    • International Journal of Railway
    • /
    • v.7 no.4
    • /
    • pp.91-93
    • /
    • 2014
  • In these days, use of proper soils for construction materials become more limited, but wasted soils are abundant; therefore, the method which can use wasted soil such as soft clay has been investigated. Air-foamed stabilized soil has been used widely, but never been used as a subgrade material. The aim of this study is to verify the use of air-foamed stabilized soil as the subgrade construction material. Several wasted soils such as soft clay was selected to make air-foamed stabilized soil mixtures. The air-foamed stabilized mixture design was conducted to find the optimum quantity of stabilizing agent (cement) and air-foamed, and the effect of cement quantity and air-foamed quantity on strength of air-foamed stabilized soil mixtures base on the test results of unconfined compression test was investigated. As the quantity of cement is increased, the strength is increased, but the quantity of air-foamed is increased and the strength is decreased. Elastic moduli based on unconfined compression strength were obtained to use as subgrade of railway track design.

A Study on Improving the Strength Properties of Adobe Brick with the use of Agriculture Waste Stabilizer

  • Sasui, Sasui;Kim, Gyu-Yong;Lee, Sang Kyu;Son, Min-Jae;Hwang, Eui-Chul;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.25-26
    • /
    • 2019
  • The construction of adobe houses in flood prone areas is a common practice. These houses collapse when hydraulic loads from flood exerts on the houses. The failure occurs because the adobe brick lacks strength. In order to improve strength of adobe brick, the effects of agriculture waste therefore rice straw, rice husk and rice husk ash as a stabilizing agent have been explored in this paper. The compressive strength test and splitting test was conducted on the adobe specimens which were stabilized with 2% rice straws, 2% rice husk and 2% rice husk ash by the dry weight of soil. The results showed the improvement in strength and elasticity of specimens containing rice straws & rice husk. Whereas with the addition of rice husk ash, the adobe loses its strength and showed plastic behavior.

  • PDF

The Effect of Lidocaine and Procainamide on the Hepatic Aldehyde Oxidase Activity (알데히드 옥시다제의 활성에 미치는 리도카인 및 프로카인아미드의 영향)

  • Huh, Keun;Kim, Jin-Sook;Jin, Da-Qing;Ha, Eun-Pil;Lee, Sang-Il;Yong, Chul-Soon
    • YAKHAK HOEJI
    • /
    • v.43 no.6
    • /
    • pp.756-761
    • /
    • 1999
  • Lipid peroxidation mediated by hydroxyl radicals which are generated during myocardial ischermia has suggested as a possible mechanism of ischemic myocardial damage. Recently, it has been reported that anti-arrhythmic action of lidocaine, a local anesthetic, is attributed to its "membrane-stabilizing" properties through scavenging free radicals, thus, inhibiting lipid peroxidation. Aldehyde oxidase and xanthine oxidase which catalyze the oxidation of many purine, pyrimidine and pteridine derivatives are known as free radical generating systems. In this experiment, we studied the effect of lidocaine and procainamide on the hepatic aldehyde and xanthine oxidase activity and antioxidative activities. It was found that lidocaine and procainamide inhibited both NADPH-dependent and independent lipid peroxidation. Both of tested compounds were found to be ineffective in inhibiting xanthine oxidase. Lidocaine and procainamide, however, inhibited aldehyde oxidase activity in vitro as well as in vivo. Based on the above results, lidocaine and procainamide could be employed as a therapeutic agent for aldehyde oxidaserelated disease.d disease.

  • PDF