• Title/Summary/Keyword: stabilization height

Search Result 106, Processing Time 0.025 seconds

Posture Stabilization Control of Biped Transformer Robot under Disturbances (이족 트랜스포머 로봇의 외란 대응 자세 안정화 제어)

  • Geun-Tae Kim;Myung-Hun Yeo;Jung-Yup Kim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.241-250
    • /
    • 2023
  • This paper describes the posture stabilization control of a bipedal transformer robot being developed for military use. An inverted pendulum model with a rectangular that considers the robot's inertia is proposed, and a posture stabilization moment that can maintain the body tilt angle is derived by applying disturbance observer and state feedback control. In addition, vertical force and posture stabilization moments that can maintain the body height and balance are derived through QP optimization to obtain the necessary torques and vertical force for each foot. The roll and pitch angles of the IMU sensor attached to the robot's feet are reflected in the ankle joint to enable flexible adaptation to changes in ground inclination. Finally, the effectiveness of the proposed algorithm in posture stabilization is verified by comparing and analyzing the difference in body tilt angle due to disturbances and ground inclination changes with and without algorithm application, using Gazebo dynamic simulation and a down-scale test platform.

A Study on the Effect of AC Electric Field on the Liftoff Characteristics of Turbulent Propane Jets. (교류전기장이 프로판 난류제트 화염의 부상특성에 미치는 영향)

  • Park, Chul-Soo;Lee, Sang-Min;Cha, Min-Suk;Chung, Suk-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.83-88
    • /
    • 2004
  • High voltage AC electric field has been applied to turbulent propane jets to investigate the effect of electric field on liftoff characteristics. Liftoff velocity and liftoff height have been measured by varying the applied voltage and frequency. Liftoff velocities were delayed and liftoff heights were reduced by applying AC, not by DC. The electric effect became disappeared with further increasing jet velocities, which shows that the effect can be explained by the balance between inertia force and electric force. The flame stabilization effect was intensified as either applied voltage or frequency increased. Plasma streamers were generated between the flame and the jet under high voltage conditions. Liftoff velocity in the absence of plasma can be well correlated by the function of voltage and frequency.

  • PDF

Liftoff mechanisms in hydrogen turbulent non-premixed jet flames (수소 난류확산화염에서의 부상 메커니즘에 대한 연구)

  • Oh, Jeong-Seog;Kim, Mun-ki;Choi, Yeong-Il;Yoon, Young-Bin
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.7-12
    • /
    • 2007
  • To reveal the newly found liftoff height behavior of hydrogen jet, we have experimentally studied the stabilization mechanism of turbulent, lifted jet flames in a non-premixed condition. The objectives of the present research are to report the phenomenon of a liftoff height decreasing as increasing fuel velocity, to analyse the flame structure and behavior of the lifted jet, and to explain the mechanisms of flame stability in hydrogen turbulent non-premixed jet flames. The velocity of hydrogen was varied from 100 to 300m/s and a coaxial air velocity was fixed at 16m/s with a coflow air less than 0.1m/s. For the simultaneous measurement of velocity field and reaction zone. PIV and OH PLIF technique was used with two Nd:Yag lasers and CCD cameras. As results, it has been found that the stabilization of lifted hydrogen diffusion flames is related with a turbulent intensity, which means that combustion occurs where the local flow velocity is valanced with the turbulent flame propagation velocity.

  • PDF

Investigation of liftoff mechanisms in hydrogen turbulent non-premixed jet flames (수소 난류확산화염에서의 부상 메커니즘에 대한 연구)

  • Oh, Jeong-Seog;Kim, Mun-Ki;Choi, Yeong-Il;Yoon, Young-Bin
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.135-140
    • /
    • 2006
  • The stabilization mechanism of turbulent, lifted jet flames in a non-premixed condition has been studied experimentally. The objectives are to explain the phenomenon of a liftoff height decreasing as increasing fuel velocity and to reveal the mechanisms of flame stability Hydrogen was varied from 100 to 300 m/s and a coaxial air was fixed at 16 m/s with a coflow air less than 0.1 m/s. The technique of PIV and OH PLIF was used simultaneously with CCD and ICCD cameras. It was found that the liftoff height of the jet decreased with an increased fuel jet exit velocity. The leading edge at the flame base was moving along the stoichiometric line. Finally we confirmed that the stabilization of lifted hydrogen diffusion flames is related with a turbulent intensity, which means combustion is occurred where the local flow velocity is equal to the turbulent flame propagation velocity.

  • PDF

3-Dimension Lumbar Stabilization Exercise has an Influence on Pain of Degenerative Disc Disease Patients and the Spinal Stabilization muscle strength (3차원 척추 안정화 운동이 퇴행성 변성 디스크 환자의 통증과 척추 안정화 근력에 미치는 효과)

  • Kim, Seong-Ho;Kim, Myung-Joon
    • Journal of Korean Physical Therapy Science
    • /
    • v.13 no.1
    • /
    • pp.29-38
    • /
    • 2006
  • The purpose of this study lies in finding out the effect that variation of pain and body deflection posture has an influence on the static spinal stabilization after having performed spinal stabilization exercise making degenerative disc disease patients an object over 8 weeks using $CENTAUR^{(R)}$, 3-D spinal stabilization training implement. Subjects : 61 of DDD patients were made as an object of this study (mean age: 45.46 years, SD: ${\pm}12.78$, range: 16-68), their average height was 161.87cm, average weight 60.70kg, 12 males and 49 females were involved. Methods: 8 various investigations were performed and varied values were compared with reinvestigation done after having exercised 8 weeks using 3-D $CENTAUR^{(R)}$. We used VAS(Visual Analog Scale) in order to see the variation of pain intensity, MOS(Modified Oswestry Scale) in order to see activities of daily life. Results VAS was lessened from 7.50 to 2.71, limitation of routine life(MOS) from 20.26 to 9.32, there were remarkable differences statistically(p<0.05). As a result of muscular investigation for static spinal stabilization by 8 variations of body deflection, muscular strength were all increased and there were remarkable differences statistically(p<0.05). Conclusions : It has been turned out that pain and limitation of daily life was lessened as a result of making 61 of degenerative disc disease patients exercised 8 weeks using $CENTAUR^{(R)}$, 3-D spinal stabilization training implement, deep muscular power was increased. Thus it has been turned out that 3-D lumbar stabilization exercise has an effect on the spinal muscles strengthening and alleviation of their pain for degenerative disc disease.

  • PDF

Comparison of Glenohumeral Stabilization Exercise and Scapular Stabilization Exercise on Upper Extremity Stability, Alignment, Pain, Muscle Power and Range of Motion in Patients With Nonspecific Shoulder Pain

  • Jeon, Na-young;Chon, Seung-chul
    • Physical Therapy Korea
    • /
    • v.23 no.4
    • /
    • pp.38-46
    • /
    • 2016
  • Background: Shoulder stabilization commonly involves two components: the glenohumeral stabilization exercise (GSE) and scapular stabilization exercise (SSE). Despite the fact that the shoulder stabilization has advantageous merit, to our knowledge, only a few studies have compared the superior of the GSE and the SSE. Objects: The purpose of this study was to assess the effects of GSE in patients with nonspecific shoulder pain. Methods: Thirty subjects with nonspecific shoulder pain were randomly divided into an experimental group and control group, each with 15 patients. The experimental group used an GSE, whereas the control group did SSE. All subjects were measured in shoulder stability, scapular symmetric alignment, pain, muscle power, and range of motion before and after the intervention. Results: GSE resulted in significantly better shoulder stability (p=.046, from $8.67{\pm}7.54$ score to $13.93{\pm}9.40$) in the experimental group compared with SSE in the control group. However, no significant effects were observed for scapular symmetric alignment including the angles of inferior scapular distance (p=.829) and inferior scapular height difference (p=.735), pain (p=.113), muscle power including shoulder flexion (p=.723) and abduction (p=.897) and range of motion including shoulder flexion (p=.853) and abduction (p=.472). Conclusion: These findings suggest that GSE may be more effective in increasing the shoulder stability than the SSE in patients with nonspecific shoulder pain, probably through a centralization effect on the shoulder mechanism.

Effect of Coflow Air Velocity on Heat-loss-induced Self-excitation in Laminar Lifted Propane Coflow-Jet Flames Diluted with Nitrogen (질소로 희석된 프로판 동축류 층류 제트 부상화염에서 열손실에 의한 자기진동에 대한 동축류 속도 효과)

  • Lee, Won-June;Yoon, Sung-Hwan;Park, Jeong;Kwon, Oh-Boong;Park, Jong-Ho;Kim, Tae-Hyung
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.1
    • /
    • pp.48-57
    • /
    • 2012
  • Laminar lifted propane coflow-jet flames diluted with nitrogen were experimentally investigated to determine heat-loss-related self-excitation regimes in the flame stability map and elucidate the individual flame characteristics. There exists a critical lift-off height over which flame-stabilizing effect becomes minor, thereby causing a normal heat-loss-induced self-excitation with O(0.01 Hz). Air-coflowing can suppress the normal heat-loss-induced self-excitation through increase of a Peclet number; meanwhile it can enhance the normal heat-lossinduced self-excitation through reducing fuel concentration gradient and thereby decreasing the reaction rate of trailing diffusion flame. Below the critical lift-off height. the effect of flame stabilization is superior, leading to a coflow-modulated heat-loss-induced self-excitation with O(0.001 Hz). Over the critical lift-off height, the effect of reducing fuel concentration gradient is pronounced, so that the normal heat-loss-induced self-excitation is restored. A newly found prompt self-excitation, observed prior to a heat-loss-induced flame blowout, is discussed. Heat-loss-related self-excitations, obtained laminar lifted propane coflow-jet flames diluted with nitrogen, were characterized by the functional dependency of Strouhal number on related parameters. The critical lift-off height was also reasonably characterized by Peclet number and fuel mole fraction.

A caving self-stabilization bearing structure of advancing cutting roof for gob-side entry retaining with hard roof stratum

  • Yang, Hongyun;Liu, Yanbao;Cao, Shugang;Pan, Ruikai;Wang, Hui;Li, Yong;Luo, Feng
    • Geomechanics and Engineering
    • /
    • v.21 no.1
    • /
    • pp.23-33
    • /
    • 2020
  • An advancing cutting roof for gob-side entry retaining with no-pillar mining under specific geological conditions is more conducive to the safe and efficient production in a coalmine. This method is being promoted for use in a large number of coalmines because it has many advantages compared to the retaining method with an artificial filling wall as the gateway side filling body. In order to observe the inner structure of the gateway cutting roof and understand its stability mechanism, an equivalent material simulation experiment for a coalmine with complex geological conditions was carried out in this study. The results show that a "self-stabilization bearing structure" equilibrium model was found after the cutting roof caving when the cut line deviation angle was unequal to zero and the cut height was greater than the mining height, and the caving roof rock was hard without damage. The model showed that its stability was mainly controlled by two key blocks. Furthermore, in order to determine the optimal parameters of the cut height and the cut line deviation angle for the cutting roof of the retaining gateway, an in-depth analysis with theoretical mechanics and mine rock mechanics of the model was performed, and the relationship between the roof balance control force and the cut height and cut line deviation angle was solved. It was found that the selection of the values of the cut height and the cut line deviation angle had to conform to a certain principle that it should not only utilize the support force provided by the coal wall and the contact surface of the two key blocks but also prevent the failure of the coal wall and the contact surface.

The Effect of Stabilization Exercise Using XCO on Flexibility, Muscular Volume and Pain of University Students with Low Back Pain (익스코를 이용한 안정화운동이 요통이 있는 대학생의 유연성, 근 부피와 통증에 미치는 영향)

  • Lee, Hyo-Jeong;Kim, Ji-Ul;Park, Ji-Su;Seong, Su-Hyeon;Cho, Jun-Kyu;Son, So-Dam
    • Journal of Korean Physical Therapy Science
    • /
    • v.25 no.1
    • /
    • pp.62-74
    • /
    • 2018
  • Background: The purpose of this study is intended to evaluate the effectiveness and analyse the change on flexibility, muscular volume and pain of university students with low back pain by stabilization exercise using XCO. Methods: The subjects(N=23) with low back pain are recruited from K university located Chungbuck. The subjects which are divided to 2 group as experimental group(N=12) conducted the stabilization exercise using XCO and control group(N=11) conducted the general stabilization exercise. The flexibility, muscular volume and pain were measured before and after intervention. Results: There were no significant differences(p>.05) in sex, age, height and weight among subjects. Also there were no significant differences(p>.05) in muscular volume and pain between of the experimental group and control group. A significant difference(p<.05) in the flexibility, contraction EO(External Oblique), contraction IO(Internal Oblique), contraction TA(Transverse Abdominal) and pain in the experimental group. There was significant difference(p<.05) in the flexibility, contraction EO(External Oblique), contraction IO(Internal Oblique) and pain in the control group. There was a significant difference(p<.05) in the flexibility of the experimental group between the control group. Conclusion: Based on this study, through a variety of age and various intervention period to apply more subjects conducting Stabilization exercise using XCO should continue.

Liftoff Mechanisms in Hydrogen Turbulent Non-premixed Jet Flames (수소 난류확산화염에서의 부상 메커니즘에 대한 연구)

  • Oh, Jeong-Seog;Kim, Mun-Ki;Choi, Yeong-Il;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.2
    • /
    • pp.26-33
    • /
    • 2007
  • To reveal the newly found liftoff height behavior of hydrogen jet, we have experimentally studied the stabilization mechanism of turbulent, lifted jet flames in a non-premixed condition. The objectives of the present research are to report the phenomenon of a liftoff height decreasing as increasing fuel velocity, to analyse the flame structure and behavior of the lifted jet, and to explain the mechanisms of flame stability in hydrogen turbulent non-premixed jet flames. The velocity of hydrogen was varied from 100 to 300m/s and a coaxial air velocity was fixed at 16m/s with a coflow air less than 0.1m/s. For the simultaneous measurement of velocity field and reaction zone, PIV and OH PLIF technique was used with two Nd:Yag lasers and CCD cameras. As results, it has been found that the stabilization of lifted hydrogen diffusion flames is related with a turbulent intensity, which means that combustion occurs at the point where the local flow velocity is balanced with the turbulent flame propagation velocity.

  • PDF