• Title/Summary/Keyword: stability of colloids

Search Result 23, Processing Time 0.025 seconds

An Experimental Study on the Erosion of a Compacted Calcium Bentonite Block (압축된 칼슘벤토나이트 블록의 침식에 대한 실험적 연구)

  • Baik Min-Hoon;Cho Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.4
    • /
    • pp.341-348
    • /
    • 2005
  • Bentonite has been considered as a candidate buffer material in the underground repository for the disposal of high-level radioactive waste because of its low permeability, high sorption capacity, self sealing characteristics, and durability in nature. In this study, the potential for separation of bentonite particles caused by the groundwater erosion was studied experimentally for a Korean Ca-bentonite under the relevant repository conditions. Results showed that bentonite particles can be generated at the bentonite/granite interface and mobilized by the water flow although the intrusion of bentonite into fracture by swelling pressure was observed to be small. Different processes of mobilization of theses colloids from the compacted bentonite block have been identified in this study. The concentration of particles eluted in water was increased as the flow rate increased. Thus the result reveals that the erosion of the bentonite surface due to the groundwater flow together with intrusion processes is the main mechanism that can mobilize bentonite colloids in the fracture of the granite.

  • PDF

Studies on the Formation and Stability of Colloids (II) : pH and Temperature Effects on the Secondary Micelle Formation of Sodium Deoxycholate

  • Park, Joon-Woo;Chung, He-Sson
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.2
    • /
    • pp.118-122
    • /
    • 1987
  • The micelle formation of NaDC was studied by fluorometric and viscometric measurements. The thermodynamic parameters of the primary and secondary micellization of the bile salt were evaluated. The primary micelle formation was appeared to be an entropy driven process due to hydrophobic effect, while the major driving force for secondary micelle formation of the bile salt is the large negative enthalpy. The secondary micelle provides less hydrophobic environment to pyrene than the primary micelle does. The cooperative aggregation of primary micelles via hvdrogen bond formation was proposed for the secondary micelle formation.

Conformational Stability of Proteins in Colloidal Food Model System (콜로이드 모델 식품에 있어 단백질의 구조적 안정성)

  • Song, Kyung-Bin
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.277-281
    • /
    • 1993
  • To elucidate the conformational stability of proteins in colloidal food system, molecular properties of various proteins such as chemically modified ${\beta}-lactoglobulin$, bovine serum albumin (BSA) structural intermediates, and ${\beta}-casein$ under chaotropic conditions, were examined using circular dichroism, SS bond content, and hydrodynamic radius determination. As refolding time increases, BSA intermediates approach the conformation of native BSA. And succinylation made ${\beta}-lactoglobulin$ have more aperiodic structure by increasing net negative charge. Also, under chaotropic conditions, the conformation of P-casein was affected by hydrophobic interactions. This study clearly indicates that hydrophobic interactions and electrostatic interactions are major contributing factors in conformational stability of proteins.

  • PDF

Effect of Poly(vinyl alcohol) and Poly(vinyl alcohol) Mono Thiol on the Stability Properties of Poly(vinyl acetate) Latex (폴리비닐알코올과 폴리비닐알코올모노티올이 폴리초산비닐 라텍스의 안정성에 미치는 영향)

  • 이서용;박이순
    • Polymer(Korea)
    • /
    • v.24 no.5
    • /
    • pp.579-588
    • /
    • 2000
  • The effects of protective colloids on the colloid stability of poly(vinyl acetate) (PVAc) latex was investigated. The stability of PVAc latex in reactive poly(vinyl alcohol) mono thiol (PVALT) (DP=1080) having 78.4% saponification value was better than poly (vinyl alcohol)(PVA) (DP=1100) having 81.6% saponification value. The colloidal stability of PVAc latex particles improved drastically with increase of the reactive PVALT. The particle surface morphology of PVAc latex was examined by transmission electron microscopy (TEM). It was shown that particle size of 1ha latexes decreased with increasing reactive PVALT concentration. Therefore, the stabilities of latex for reactive PVALT protective colloid was superior to that of PVA ones. This result is due to the introduction of many thiol groups that induce chemical bonds at PVAc latexes surface, so that the formation of PVALT-b-PVAc block copolymer via the reaction of PVAc with reactive PVALT. In addition, zeta potential of the PVAc latexes decreased with increasing sodium carbonate concentration.

  • PDF

Influence of Salt Concentrations on the Stabilities and Properties of Sodium Caseinate Stabilized Oil-in-Water Emulsions

  • Surh, Jeong-Hee;McClements, David Julian
    • Food Science and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.8-14
    • /
    • 2008
  • The influence of salt concentration on the stability of sodium caseinate (CAS)-stabilized emulsions (20 wt% corn oil, 3.2 wt% CAS, 5 mM imidazole/acetate buffer, pH 7) was examined. In the absence of salt, laser diffraction measurements and optical microscopy measurements indicated there were some large oil droplets ($d>10\;{\mu}m$) in the emulsions stabilized by 0.8 to 3.2 wt% of CAS. The droplet aggregation (mostly droplet coalescence) observed in the emulsions containing ${\leq}2.8\;wt%$ CAS tended to decrease as the CAS concentration increased, however, after which concentration (at 3.2 wt% CAS) depletion flocculation occurred. The addition of $CaCl_2$ (5-20 mM) into the emulsions stabilized by 3.2 wt% CAS prevented the depletion flocculation although there was a small fraction of relatively large individual droplets in the emulsions, which was attributed to electrostatic screening effect and bridging effect of calcium ion. This study has shown that calcium ion that has been reputed to promote droplet aggregation could improve emulsion stability against droplet aggregation in CAS-stabilized emulsions.

A Study on the Zeta Potential Measurement and the Stability Analysis of Nano Fluids using a Particle Image Processing System (입자 영상 처리 시스템을 이용한 콜로이드 입자의 제타포텐셜 측정 및 나노유체 분산 특성 연구)

  • Lee, J.K.;Kim, S.C.;Kim, H.J.;Lee, C.G.;Ju, C.H.;Lee, L.C.
    • Journal of ILASS-Korea
    • /
    • v.8 no.1
    • /
    • pp.16-22
    • /
    • 2003
  • Zeta potential measurements of colloid particles suspended in a liquid are performed by a Zeta Meter developed. There are many applications of colloid stability in spray technology, paints, wastewater treatment, and pharmaceuticalse. Zeta potentials of charged particles are obtained by measuring the electrophoretic velocities of the particles using video enhanced microscopy and image analysis program. The values of zeta potential of polystyrene latex(PSL), $silica(SiO_2)$M, polyvinylidence difluoride(PVDF), silicon nitride, and alumina particles in deionized (DI) water were measured to be -40.5, -31.9, -25.2, -15.1 and -10.1mV, respectively. The particles having high zeta potential less than -20 mV are stable in DI water, because the double layers of them have strong repulsive forces mutually, and the particles having low zeta potential over -20mV are unstable due to Van Der Waals forces. Silica(>20nm), PSL, aluminum and PVDF particles were found to be stable that would remain separate and well disperse, while silicon nitride and alumina particles were found to be unstable that would gradually agglomerate in DI water.

  • PDF

Studies on the Formation and Stability of Colloids (I): Perturbation of Micelle Formation of Sodium Deoxycholate by Amides

  • Park, Joon-Woo;Chung He-Sson
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.5
    • /
    • pp.399-402
    • /
    • 1986
  • The critical micelle concentration (CMC) of sodium deoxycholate (NaDC) and the effects of amides on the micellization processes have been studied by fluorometric technique using pyrene as a probe. The addition of amides as cosolvent destabilized the NaDC micelle and increased the CMC. The order of effectiveness for the perturbation of NaDC micelle was N-methylacetamide ${\ge}$ DMF > acetamide > formamide, which is the order of hydrophobicity of the amines. This indicated that the effect of amides on the micellization processes of NaDC arises from diminution of the hydrophobic effect. The electrostatic repulsion between ionic head groups in the NaDC micelle appeared to be much less than that in aliphatic ionic micelle. This was also revealed in the weaker dependence of the CMC on ionic strength. The premicellar association of NaDC was not significantly involved in the micellization processes of the bile salt.

Development and Applications of Frame Retardant Nano and Microcapsule (난연기능 nano 및 microcapsule의 개발 및 응용(Ⅰ))

  • Kim, Hea-In;Hong, Yo-Han;Park, Soo-Min
    • Textile Coloration and Finishing
    • /
    • v.20 no.4
    • /
    • pp.31-42
    • /
    • 2008
  • Tricrecyl phosphate(TCP)-containing polyurea microcapsules were prepared by interfacial polymerization using aromatic 2,4-toluene diisocyanate(TDI) and ethylenediamine(EDA) as wall forming materials. The effects of the protective colloids of polyvinylalcohol(PVA) and gelatin were investigated through experimentation. The mean size of prepared polyurea microcapsules was smaller and the surface morphology of the microcapsule prepared by the PVA as protective colloid was much smoother than the gelatin. As the concentration of protective colloid increased, the wall membrane of the polyurea microcapsules became more stable, the thermal stability of the wall membrane increased, the mean particle size became smaller, and the particle distribution was more uniform. PET containg microTCPs have a higher activation energy of decomposition, higher char content and lower heat of combustion.

Fabrication of Macroporous Carbon Foam with Uniform Pore Size Using Poly(methyl methacrylate) Particles As The Template

  • Kim, Jin-Sil;Rhym, Young-Mok;Shim, Sang-Eun
    • Journal of Powder Materials
    • /
    • v.18 no.2
    • /
    • pp.129-134
    • /
    • 2011
  • Herein, macroporous carbon materials were readily prepared by carbonization of cured body of resorcinol and formaldehyde using poly(methyl methacrylate) colloid microspheres which were employed as the template in the gelation of resorcinol with formaldehyde. The gel in the water was solvent exchanged with methanol and the wet gel was dried. After carbonization of the template-gel composite at $800^{\circ}C$, it was found that pores were left corresponding to the size of the template, yielding carbon materials with a fine porous structure with enlarged surface area and significant porosity. Properties of the carbon foams including the structure, morphology, thermal stability, and porosity were investigated. Finally, it was concluded that the method using polymer colloids as the template provided a facile route to prepare carbon foams.

Copper micro/nanostructures as effective SERS active substrates for pathogen detection

  • Ankamwar, Balaprasad;Sur, Ujjal Kumar
    • Advances in nano research
    • /
    • v.9 no.2
    • /
    • pp.113-122
    • /
    • 2020
  • Surface-Enhanced Raman Scattering (SERS) spectroscopy is a multifaceted surface sensitive methodology which exploits spectroscopy-based analysis for various applications. This technique is based on the massive amplification of Raman signals which were feeble previously in order to use them for appropriate identification at qualitative and quantitative in chemical as well as biological systems. This novel powerful technique can be utilized to identify pathogens such as bacteria and viruses. As far as SERS is concerned, one of the most studied problems has been functionalization of SERS active substrate. Metal colloids and nanostructures or microstructures synthesized using noble metals such as Au, Ag and Cu are considered to be SERS active. Silver and gold are extensively used as SERS active substrates due to chemical inertness and stability in air compare to copper. However, use of Cu as a suitable alternative has been taken into account as it is cheap. Herein, we have synthesized air-stable copper microstructures/nanostructures by chemical, electrochemical and microwave-assisted methods. In this paper, we have also discussed the use of as synthesized copper micro/nanostructures as inexpensive yet effective SERS active substrates for the fast identification of micro-organisms like Staphylococcus aureus and Escherichia coli.