• Title/Summary/Keyword: stability limit velocity

Search Result 64, Processing Time 0.018 seconds

Unguided Rocket Trajectory Analysis under Rotor Wake and External Wind (로터 후류와 외풍에 따른 무유도 로켓 궤적 변화 해석)

  • Kim, Hyeongseok;Chae, Sanghyun;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.1
    • /
    • pp.41-51
    • /
    • 2018
  • Downwash from helicopter rotor blades and external winds from various maneuvering make an unguided rocket change its trajectory and range. For the prediction of the trajectory and range, it is essential to consider the downwash effect. In this study, an algorithm was developed to calculate 6-Degree-Of-Freedom(6 DOF) forces and moments exerting on the rocket, and total flight trajectory of a 2.75-inch unguided rocket in a helicopter downwash flow field. Using Actuator Disk Model(ADM) analysis result, the algorithm could analyze the entire trajectory in various initial launch condition such as launch angle, launch velocity, and external wind. The algorithm that considered the interference between a fuselage and external winds could predict the trajectory change more precisely than inflow model analysis. Using the developed algorithm, the attitude and trajectory change mechanism by the downwash effect were investigated analyzing the effective angle of attack change and characteristics of pitching stability of the unguided rocket. Also, the trajectory and range changes were analyzed by considering the downwash effect with external winds. As a result, it was concluded that the key factors of the rocket range change were downwash area and magnitude which effect on the rocket, and the secondary factors were the dynamic pressure of the rocket and the interference between a fuselage and external winds. In tailwind case which was much influential on the range characteristics than other wind cases, the range of the rocket rose as increasing the tailwind velocity. However, there was a limit that the range of the rocket did not increase more than the specific tailwind velocity.

Tracking Control for Mobile Platform based on Dynamics (동역학을 기반으로 한 모바일플랫폼 궤적제어)

  • Lee, Min-Jung;Park, Jin-Hyun;Jin, Tae-Seok;Cha, Kyung-Hwan;Choi, Young-Kui
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.201-204
    • /
    • 2008
  • The mobile robot is known as a nonlinear system with constraints. The general tracking controller for the mobile platform has been divided into the kinematic and the dynamic controller. The reason of dividing controller is the constraints. We can get some information through some numerical experiments. When the reference linear and angular velocity were given, the stability of mobile robot without the kinematic controller depend on the start point of reference cart. Therefore this paper composed of two controller for solving tracking problem. The main controller is the dynamic controller which used generally such as the PID controller. And this paper adopts the auxiliary controller in order to compensate the difference of initial point between the reference cart and a mobile robot. Finally, the numerical experiment is performed in order to show the validity of our method.

  • PDF

Design on the large section of station tunnel under shallow overburden (저토피고 대단면 정거장터널의 설계)

  • Jeong, Yun-Young;Choi, Hae-Joon;Kim, Byung-Ju;Yu, Bong-Won;Kim, Yong-Il;Oh, Sung-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.2
    • /
    • pp.171-182
    • /
    • 2007
  • For minimizing the effect on the focus of civil traffic and environment conditions related to the excavation at the traffic jamming points, an underground station tunnel was planned with 35.5 m in length and bigger area than $200\;m^2$ in sedimentary rock mass. It faced the case that the overburden was just under 13 m. Not based on a pattern design but on the case histories of similar projects and arching effect, the design of large section tunnel under shallow overburden was investigated on three design subjects which are shape effect on the section area, application method of support pressure, and supporting and tunnel safety. According to the mechanical effect from section shape, a basic design and a preliminary design was obtained, and then supporting method of large section was planned by the supporting of NATM and a pipe roof method for subsidence prevention and mechanical stability. From the comparative study between both designs, it was found that the basic design was suitable and acceptable for the steel alignment of tunnel lining, safety and the design parameter restricted by the limit considered as partition of the excavation facilities. Through the analysis result of preliminary design showing the mechanical stability without stress concentration in tunnel arch level, it also was induced that shape effect of the large section area and yielding load obtained from deformation zone in the surrounding rock mass of tunnel have to be considered as major topics for the further development of design technique on the large section tunnel.

  • PDF

The 'Consequence Analysis' of Variables Affecting the Extent of Damage Caused by Butane Vapor Cloud Explosions (부탄가스 증기운폭발의 피해범위에 영향을 미치는 변수에 관한 고찰)

  • Char Soon-Chul;Choo Kwang-Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.4 s.16
    • /
    • pp.1-7
    • /
    • 2001
  • This paper presents a 'consequence analysis' for vapor cloud explosions caused by heavy gas leakages from commercially used storage tanks at petrochemical plants. Particularly, this paper emphasizes on evaluating the results of various vapor cloud explosion accidents from Butane storage tanks. Also this paper analyses the impact of variables on the accidents in order to acquire the optimum conditions for variables. $SuperChems^{TM}$ Professional Edition was applied to analyse the impact (If atmospheric and other variables in the situation where vapor cloud continuously disperses from the ground level. Under the assumption that practical operating conditions are selected as a standard condition, and Butane leaks from the storage tank for 15 minutes, the results show that the maximum distance of LFL (Lower Flammable Limit) was 52 meters and overpressure by the vapor cloud explosion was 1 psi at 128.2 meters. It is observed that the impact of the variables on accidental Butane storage tank leakage mainly varied upon atmospheric stability, wind velocity, pipe line size, visible length, etc., and changes in the simulation result occurred as the variables varied. The maximum distance of the LFL (Lower Flammable Limit) increased as the visible length became shorter, the size of the leak became larger, the wind velocity was decreased, and the climatic conditions became more stable. Thus, by analysing the variables that influence the simulation results of explosions of Butane storage tanks containing heavy gases, I am presenting the most appropriate method for 'consequence analysis' and the selection of standards for suitable values of variables, to obtain the most optimal conditions for the best results.

  • PDF