The aim of this study is to evaluate the leaching characteristics of lead, copper, cadmium, and mercury from steel making slag by seawater. To demonstrate the leaching characteristics of heavy metals from steel making slag by seawater, it was carried to various leaching tests such as regular leaching tests, liquid/sold(LS) leaching test and pH static test. From the leachability of $Pb^{+2},\;Cu^{+2},\;and\;Cd^{+2}$ from steel making slag in pH static test, it is distinguished between distilled water and seawater. With distilled water, it is very low between pH 7-8 and pH 11-12. On the other hands, with the seawater, its leaching is higher than that of distilled water. In particular, concentration of $Hg^{+2}$ leached from slag by seawater is lower than that of distilled water. Meanwhile, we found that the heavy metals from steel making slag would be dissolved and precipitated using geochemcial equilibrium program such as visual minteq. Lead and copper leached from steel making slag with seawater were dissolved nearly in the range of pH 11-12, but in the range of pH 7-10 those were precipitated about 90%. And cadmium leached from steel making slag with seawater were dissolved completely. On pH static test with distilled water, lead leached from steel making slag seemed to be similar to pH static test with seawater. However, copper and cadmium leached from steel making slag were dissolved. In general, the species of lead leached from steel making slag were formed mainly of $PbCl^+,\;PbSO_4$, the species of copper were formed mainly of $CuSO_4,\;CuCO_3$, the species of cadmium were formed mainly of $CdCl^+,\;CdSO_4$ due to being sorbed with the anions($Cl^-,\;CO_3^{-2},\;SO_4^{-2}$) of the seawater. Both pH static test with seawater and distilled water, it is not in the case of the mercury. Most of mercury leached from steel making slag was precipitated(SI=0). Because the decreasing of $Hg^{+2}$ concentrations depends ferociously on the variation of chloride($Cl^-$) existed in the seawater. $Hg^{+2}$ leached from steel making slag could be sorbed strongly with chloride($Cl^-$) compared of carbonate($CO_3^{-2}$) and sulfate($SO_4^{-2}$) in the seawater. On the basis of that result, we found that the species of mercury was formed of calomel($Hg_2Cl_2$) as one of finite solid. Due to forming a calomel($Hg_2Cl_2$) in the seawater, the stability of mercury species by steel making slag should be higher than those of lead, copper, and cadmium species. Regarding the results stated above, we postulated that the steel making slag could be recycled to sea aggregates due to being distinguishing leachability of heavy metals($Pb^{+2},\;Cu^{+2},\;Cd^{+2},\;and\;Hg^{+2}$) between leaching tests by distilled water and seawater.