• Title/Summary/Keyword: stability constant

Search Result 1,118, Processing Time 0.027 seconds

A NEW APPROACH TO EXPONENTIAL STABILITY ANALYSIS OF NONLINEAR SYSTEMS

  • WAN ANHUA
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.345-351
    • /
    • 2005
  • An effective method for analyzing the stability of nonlinear systems is developed. After introducing a novel concept named the point- wise generalized Dahlquist constant for any mapping and presenting its useful properties, we show that the point-wise generalized Dahlquist constant is sufficient for characterizing the exponential stability of nonlinear systems.

Dynamic Stability Analysis of Clamped-Hinged Columns with Constant Volume (일정체적 고정-회전 기둥의 동적안정 해석)

  • Kim, Suk-Ki;Lee, Byoung-Koo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.10 s.115
    • /
    • pp.1074-1081
    • /
    • 2006
  • This paper deals with the dynamic stability analysis of clamped-hinged columns with constant volume. Numerical methods are developed for solving natural frequencies and buckling loads of such columns, subjected to an axial compressive load. The parabolic taper with the regular polygon cross-section is considered, whose material volume and column length are always held constant. Differential equations governing both free vibrations and buckled shapes of such columns are derived. The Runge-Kutta method is used to integrate the differential equations, and the Regula-Falsi method is used to determine natural frequencies and buckling loads, respectively. The numerical methods developed herein for computing natural frequencies and buckling loads are found to be efficient and robust. From the numerical results, dynamic stability regions, dynamic optimal shapes and configurations of strongest columns are reported in figures and tables.

HYERS-ULAM STABILITY OF A CLOSED OPERATOR IN A HILBERT SPACE

  • Hirasawa Go;Miura Takeshi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.1
    • /
    • pp.107-117
    • /
    • 2006
  • We give some necessary and sufficient conditions in order that a closed operator in a Hilbert space into another have the Hyers-Ulam stability. Moreover, we prove the existence of the stability constant for a closed operator. We also determine the stability constant in terms of the lower bound.

Study of the Stability of Brass Coated on Steel Cords with pH and Applied Constant Potential Changes in Aqueous Solutions by AC Impedance Measurements (교류임피던스 측정에 의한 수용액에서 pH와 일정공급전위 변화에 따른 강철심에 도금된 놋쇠의 안정성 연구)

  • Ko, Young Chun;Chung, Keun Ho
    • Analytical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.293-298
    • /
    • 1995
  • The stability of brass coated on steel cords with pH and applied constant potential changes in aqueous solution has been investigated by AC impedance measurements. In solutions of the constant pH, as a applied constant potential is shifted to positive potential, the coating pore resistance is reduced. The fact indicates that as a applied constant potential is shifted to positive potential, the brass coated is dissolved more in solution. The stability of brass coated on steel cords decrease in the order pH=7.1 > pH=4.0 > pH=10.0. The above results are demonstrated by the data of scanning of electronic microscopy(SEM)/energy dispersive spectrometer(EDS).

  • PDF

Estimating Stability of MTDC Systems with Different Control Strategy

  • Nguyen, Thai-Thanh;Son, Ho-Ik;Kim, Hak-Man
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.443-451
    • /
    • 2015
  • The stability of a multi-terminal direct current (MTDC) system is often influenced by its control strategy. To improve the stability of the MTDC system, the control strategy of the MTDC system must be appropriately adopted. This paper deals with estimating stability of a MTDC system based on the line-commutated converter based high voltage direct current (LCC HVDC) system with an inverter with constant extinction angle (CEA) control or a rectifier with constant ignition angle (CIA) control. In order to evaluate effects of two control strategies on stability, a MTDC system is tested on two conditions: initialization and changing DC power transfer. In order to compare the stability effects of the MTDC system according to each control strategy, a mathematical MTDC model is analyzed in frequency domain and time domain. In addition, Bode stability criterion and transient response are carried out to estimate its stability.

Dynamic Stability Regions of Columns with Constant Volume and Both Clamped Ends (일정체적 양단고정 기둥의 동적 안정영역)

  • Lee, Byoung-Koo;Lee, Tae-Eun;Kim, Gwon-Sik;Lee, Seung-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.805-808
    • /
    • 2006
  • This paper deals with the dynamic stability analyses of columns with constant volume and both clamped ends. Numerical methods are developed for solving natural frequencies of such column, subjected to an axial compressive load. Differential equation governing free vibration of such column is derived. The numerical methods developed herein for computing natural frequencies are found to be efficient and robust. From the numerical results, the dynamic stability regions of such columns are obtained.

  • PDF

Monte Carlo Simulation Study of Solvent Effect on Selectivity of 18-Crown-6 to between La3+ and Nd3+ Ion

  • Kim, Hag-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.751-756
    • /
    • 2003
  • We have investigated the solvent effects on Δlog $K_s$ (the difference of stability constant of binding) and the relative free energies of binding of $La^{3+} and Nd^{3+}$ ions to 18-crown-6 by a Monte Carlo simulation of statistical perturbation theory (SPT) in diverse solvents. We compared relative binding Gibbs free energies and the differences in stability constant (Δlog $K_s$) of binding of $La^{3+} and Nd^{3+}$ ions to 18-crown-6 in $CH_3OH$ in this study with the experimental. There is a good agreement between our study and the experimental. We noted that Borns function of the solvents, the electron pair donor properties of the solvent, the radii of host and guest and the differences in solvation dominate the differences in the stability constant (Δlog $K_s$) as well as the relative free energies of binding of TEX>$La^{3+} to Nd^{3+}$ ions to 18-crown-6. The results of this study appear promising for providing the association properties of crown ethers with alkaline earth metals among polar solvents and the less polar or non-polar solvents.

Influence of Sediment on the Chemical Speciation of Copper and Cadmium in an Aquatic System (저질이 천연수중 구리와 카드뮴의 화학종 분포에 미치는 영향)

  • 이군자;박청길
    • Journal of Environmental Science International
    • /
    • v.1 no.2
    • /
    • pp.59-69
    • /
    • 1992
  • In order to predict the distribution of chemical species of copper and cadmium in water, conditional stability constant and complexation capacity between copper or cadmium and natural aquatic sediment have been determined in a shallow lake in Haman, Kyungnam. Kinetic parameters were calculated by Langmuir isotherm equation. Conditional stability constant was log $K_{cuSed}=4.78 and log K_{cdSed}=4.45$. Complexation capacity was $1.70{\times}10^{-4}$moles/g for copper and $5.54{\times}10^{-5}$moles/g for cadmium. Accuracy of experimental values of conditional stability constant was checked by comparing the calculated concentration of the metals with the measured one. Relatively good agreement between these values was obtained. Relative errors were 8.9% for copper and 6.5% for cadmium. Data of the measured conditional stability constant were put into data base of MINEQL computer program, and concentration of various chemical species of copper and cadmium in a model aquatic system was calculated. Aquatic sediment was associated with copper at the concentration of $10^{-5M}(0.059g/\ell)$10-5M(0.059g/l) and with cadmium at the concentration of $10^{-6M}(0.018g/\ell)$, and it significantly influenced on the distribution of chemical species of the metals. This result showed that prediction of chemical species of the heavy metals in an aquatic system should be taken into account the influence of the sediment.

  • PDF

Selectivity of between K+ and Na+ Ions to 12-Crown-4: QSPR Analysis by a Monte Carlo Simulation Study

  • Kim, Hag-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.431-437
    • /
    • 2008
  • The solvent effects on the relative free energies of binding of K+ and Na+ ions to 12-crown-4 and Dlog Ks (the difference of stability constant of binding) have been investigated by a Monte Carlo simulation of statistical perturbation theory (SPT) in several solvents. Comparing the relative free energies of binding of K+ and Na+ ions to 12-crown-4, in CH3OH of this study with experimental works, there is a good agreement among the studies. We have reported here the quantitative solvent-polarity relationships (QSPR) studied on the solvent effects the relative free energies of binding of K+ and Na+ ions to 12-crown-4. We noted that DN(donor number) dominates the differences in relative solvation Gibbs free energies of K+ and Na+ ions and DN dominates the negative values in differences in the stability constant (Dlog Ks) as well as the relative free energies of binding of K+ and Na+ ions to 12-crown-4 and p* (Kamlet-Tafts solvatochromic parameters) dominates the positive values in differences in the stability constant (Dlog Ks) as well as the relative free energies of binding of K+ and Na+ ions to 12-crown-4.

Influence of Spring Constant at Fixed End on Stability of Beck's Column with Tip Mass (固定端 의 스프링 상수 가 末端質量을 가진 Beck′s Column 의 安定性 에 미치는 영향)

  • 윤한익;김광식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.606-612
    • /
    • 1985
  • On the stability of the Beck's column with a tip mass, the influence of the characteristics of the springs at the fixed end of the column are studied. The equations of motion and boundary conditions of this system are established by using the Hamiton's principle. On the evaluation of the stability of the column, t he effect of the shear deformation and rotatory inertial is considered in calculation. For the maintenance of the stability of the column, it is proved that the constant of the translational spring at the fixed end must be very large while th magnitude of the constant of the rotational spring at the fixed end has no effect. When the constants of the springs at the fixed end are small, it is also proved that the influence of the moment of inertial of the tip mass on the stability of the column are decreased and for the translational spring the degree of the decrease is more and more. Therefore it is found that the characteristics of the springs at the fixed end are very effective elements for the stability of the column when the columns subjected to a compressive follower force are designed.