• 제목/요약/키워드: stability charts

검색결과 54건 처리시간 0.021초

사면재해 방지를 위한 Soil Nailing 공법의 사면안정 도표 (Slope Stability Charts of Soil Nailing Method for Slope Diaster Prevention)

  • 김지성;구미옥
    • 한국콘텐츠학회논문지
    • /
    • 제16권7호
    • /
    • pp.457-464
    • /
    • 2016
  • Soil Nailing으로 보강된 사면안정 해석시 프로그램에 대한 전문적인 지식과 숙련된 기술이 필요하며, 해석시 많은 시간과 경제적 손실이 따르게 된다. 본 연구에서는 이러한 손실을 절약하고자 하였다. 네일링으로 보강된 사면안정해석에 강도감소법을 적용한 MIDAS GTS 프로그램을 사용한 후 그 결과를 도표화 하였다. 작성된 도표들은 신속한 사면재해 방지에 활용 가능하다. 네일의 간격, 입사각, 사면의 형태와 토질 정수를 변화시키며 구한 사면 안전율을 분석한 결과, 네일의 입사각이 $10{\sim}20^{\circ}$일 때 네일의 간격은 0.8~1.2m 사이일 때 효과적으로 나타났다. 사면의 경사가 1:0.5, 1:1, 1:2일 때 본 연구에서 제시한 안정도표와 Singh의 안정도표 값의 오차가 각각 3.45%, 8.65%, 4.35%,로 나타났다.

LE analysis on unsaturated slope stability with introduction of nonlinearity of soil strength

  • Deng, Dong-ping;Lu, Kuan;Li, Liang
    • Geomechanics and Engineering
    • /
    • 제19권2호
    • /
    • pp.179-191
    • /
    • 2019
  • Based on the effective stress principle, a new formula for shear strength of unsaturated soil is derived under the general nonlinear Mohr-Coulomb (M-C) strength criterion to improve the classical strength criterion of unsaturated soil. Meanwhile, the simple irrigation model under steady seepage is adopted to obtain the distribution of the matrix suction or the degree of saturation (DOS) above the groundwater table in the slope. Then, combined with the improved strength criterion of unsaturated soil and the simple irrigation model under steady seepage, the limit equilibrium (LE) solutions for the unsaturated slope stability are established according to the global LE conditions of the entire sliding body with assumption of the stresses on the slip surface. Compared to the classical strength criterion of unsaturated soil, not only the cohesion soil but also the internal friction angle is affected by the matric suction or the DOS in the improved strength criterion. Moreover, the internal friction angle related to the matric suction has the nonlinear characteristics, particularly for a small of the matric suction. Thereafter, the feasibility of the present method is verified by comparison and analysis on some slope examples. Furthermore, stability charts are also drawn to quickly analyze the unsaturated slope stability.

역학적으로 엄밀한 사면안정도표의 제안 (Proposal of a Mechanically Rigorous Slope Stability Chart)

  • 김종민
    • 한국지반공학회논문집
    • /
    • 제20권1호
    • /
    • pp.121-129
    • /
    • 2004
  • 본 연구에서는 균질 단순사면의 안정검토 시 간편하게 이용할 수 있는 사면안정도표를 제안하였다. 기존의 사면안정도표는 대부분 한계평형해석에 근거하고 있으나 잘 알려진 바와 같이 한계평형해석은 역학적으로 엄밀한 해석기법이 아니다. 반면 가상일방정식과 소성이론의 경계정리를 이용한 한계해석은 계산이 간단하면서도 역학적 엄밀성이 보장되어 사면과 같은 지반구조물의 안정해석에 적합한 해석기 법이다. 특히 유한요소와 최적화기법을 적용한 수치한계해석은 다양한 사면조건을 반영할 수 있을 뿐 만 아니라 안정해의 최적값을 효율적으로 산정할 수 있는 장점이 있다. 본 연구에서는 유효응력 개념의 수치한계해석기법을 개발하고 다양한 사면조건에 대한 해석을 수행하여 역학적으로 엄밀한 사면안정도표를 제안하였다. 유효응력해석을 위한 간극수압의 영향은 기존의 사면안정도표와 같이 간극 수압비를 적용하여 고려하였다. 제안된 안정도표와 Spencer 안정도표를 비교한 결과 Spence. 안정도표를 적용하여 사면설계를 수행할 경우 안전측 설계가 됨을 알 수 있었다.

Analytical solution of seismic stability against overturning for a rock slope with water-filled tension crack

  • Zhang, Yanjun;Nian, Tingkai;Zheng, Defeng;Zheng, Lu
    • Geomechanics and Engineering
    • /
    • 제11권4호
    • /
    • pp.457-469
    • /
    • 2016
  • Steep rock slope with water-filled tension crack will happen to overturn around the toe of the slope under seismic loading. This failure type is completely different from the common toppling failure occurring in anti-dipping layered rock mass slopes with steeply dipping discontinuities. This paper presents an analytical approach to determine the seismic factor of safety against overturning for an intact rock mass slope with water-filled tension crack considering horizontal and vertical seismic coefficients. This solution is a generalized explicit expression and is derived using the moment equilibrium approach. A numerical program based on discontinuous deformation analysis (DDA) is adopted to validate the analytical results. The parametric study is carried out to adequately investigate the effect of horizontal and vertical seismic coefficients on the overall stability against overturning for a saturated rock slope under two water pressure modes. The analytical results show that vertically upward seismic inertia force or/and second water pressure distribution mode will remarkably decrease the slope stability against overturning. Finally, several representative design charts of slopes also are presented for the practical application.

내부에 변동하는 유동을 갖는 직선 파이프의 안정성 해석 (Stability Analysis of a Straight Pipe with Time Dependent Flow)

  • 홍성철
    • 대한기계학회논문집A
    • /
    • 제28권3호
    • /
    • pp.318-324
    • /
    • 2004
  • The stability of a simply supported straight pipe is investigated. The time dependent flow is assumed to vary harmonically about a constant mean velocity. Stability conditions and dynamic reponses of a governing equation are conducted by use of multiple scale mettled. Parametric resonances and combination resonances are investigated. Stability boundaries are analytically determined. The resulted stability conditions show that instabilities exist when the frequency of flow fluctuation is close to two times the natural frequency or to the sum of any two natural frequencies. In case that the fluctuated flow frequency is close to zero or to the difference of two natural frequencies, however, instabilities are not found up to the first order of perturbation. Stability charts are numerically Presented fir the first two vibration modes.

Braced, partially braced and unbraced columns: Complete set of classical stability equations

  • Aristizabal-Ochoa, J. Dario
    • Structural Engineering and Mechanics
    • /
    • 제4권4호
    • /
    • pp.365-381
    • /
    • 1996
  • Stability equations that evaluate the elastic critical axial load of columns in any type of construction with sidesway uninhibited, partially inhibited, and totally inhibited are derived in a classical manner. These equations can be applied to the stability of frames (unbraced, partially braced, and totally braced) with rigid, semirigid, and simple connections. The complete column classification and the corresponding three stability equations overcome the limitations and paradoxes of the well known alignment charts for braced and unbraced columns and frames. Simple criteria are presented that define the concept of partially braced columns and frames, as well as the minimum lateral bracing required by columns and frames to achieve non-sway buckling mode. Various examples are presented in detail that demonstrate the effectiveness and accuracy of the complete set of stability equations.

Three-dimensional stability assessment of slopes with spatially varying undrained shear strength

  • Shi, Yunwei;Luo, Xianqi;Wang, Pingfan
    • Geomechanics and Engineering
    • /
    • 제31권4호
    • /
    • pp.375-384
    • /
    • 2022
  • The variation of the undrained shear strength (cu) is an important consideration for assessing slope stability in engineering practice. Previous studies focused on the three-dimensional (3D) stability of slopes in normally consolidated clays generally assume the undrained shear strength increases linearly with depth but does not vary in the horizontal direction. To assess the 3D stability of slopes with spatially varying undrained shear strength, the kinematic approach of limit analysis was adopted to obtain the upper bound solution to the stability number based on a modified failure mechanism. Three types failure mechanism: the toe failure, face failure and below-toe failure were considered. A serious of charts was then presented to illustrate the effect of key parameters on the slope stability and failure geometry. It was found that the stability and failure geometry of slopes are significantly influenced by the gradient of cu in the depth direction. The influence of cu profile inclination on the slope stability was found to be pronounced when the increasing gradient of cu in the depth direction is large. Slopes with larger width-to-height ratio B/H are more sensitive to the variation of cu profile inclination.

Pseudo-static stability analysis of wedges based on the nonlinear Barton-Bandis failure criterion

  • Zhao, Lianheng;Jiao, Kangfu;Zuo, Shi;Yu, Chenghao;Tang, Gaopeng
    • Geomechanics and Engineering
    • /
    • 제20권4호
    • /
    • pp.287-297
    • /
    • 2020
  • This paper investigates the stability of a three-dimensional (3D) wedge under the pseudo-static action of an earthquake based on the nonlinear Barton-Bandis (B-B) failure criterion. The influences of the mechanical parameters of the discontinuity surface, the geometric parameters of the wedge and the pseudo-static parameters of the earthquake on the stability of the wedge are analyzed, as well as the sensitivity of these parameters. Moreover, a stereographic projection is used to evaluate the influence of pseudo-static direction on instability mode. The parametric analyses show that the stability coefficient and the instability mode of the wedge depend on the mechanical parameter of the rock mass, the geometric form of the wedge and the pseudo-static state of the earthquake. The friction angle of the rock φb, the roughness coefficient of the structure surface JRC and the two angles related to strikes of the joints θ1 and θ2 are sensitive to stability. Furthermore, the sensitivity of wedge height h, the compressive strength of the rock at the fracture surface JCS and the slope angle α to the stability are insignificant.

암반사면의 전도파괴에 대한 안정해석 (Stability Analysis of Toppling Failure in Rock Slopes)

  • 이명재;이인모
    • 한국지반공학회지:지반
    • /
    • 제14권2호
    • /
    • pp.55-66
    • /
    • 1998
  • 본 논문의 목적은 불연속면의 공학적 특성, 사면형상과 하중조건 등을 고려한 암반사면 전도 파괴에 대한 안정해석방법을 개발하고 적용하는테 있다. 암반사면의 전도파괴에 대한 안정은 경사각 $\alpha_s$ 와 H/t비에 주된 영향을 받는다. 설계적용을 위하여 매개변수에 따른 My띠와 $\alpha$서 함수로 표현되는 암반사면 전도파괴에 대한 안정도표를 작성하였다. 안정도표에서 $\alpha_s$와 Hy띠가 작아질수록 안정성이 증가하는 경향을 보인다. 안정도표에서 안정영역은 간극수압변화에 따라 가장 크게 감소한다. 파괴영역의 변화는 지진력과 단계각에 가장 민감하다.

  • PDF

Stability assessment of unlined tunnels with semicircular arch and straight sides in anisotropic clay

  • Bibhash Kumar;Jagdish P. Sahoo
    • Geomechanics and Engineering
    • /
    • 제35권2호
    • /
    • pp.149-163
    • /
    • 2023
  • This paper presents stability evaluation of unlined tunnels with semi-circular arch and straight sides (SASS) driven in non-homogeneous and anisotropic undrained clay. Numerical analysis has been conducted based on lower bound finite element limit analysis with second order cone programming under plane strain condition. The solutions will be used for the assessment of stability of unlined semi-circular arch tunnels and tunnels in which semi-circular roof is supported over rectangular/square sections. The stability charts have been generated in terms of a non-dimensional factor considering linear variation in undrained anisotropic strength for normally consolidated and lightly over consolidated clay with depth, and constant undrained anisotropic strength for heavily over-consolidated clay across the depth. The effect of normalized surcharge pressure on ground surface, non-homogeneity and anisotropy of clay, tunnel cover to width ratio and height to width ratio of tunnel on the stability factor and associated zone of shear failure at yielding have been examined and discussed. The geometry of tunnel in terms of shape and size, and non-homogeneity and anisotropy in undrained strength of clay has been observed to influence significantly the stability of unlined SASS tunnels.