• Title/Summary/Keyword: stability, nonlinear analysis

Search Result 742, Processing Time 0.026 seconds

Robust attitude control and analysis for 3-axis stabilized spacecraft using sliding mode control (슬라이딩 모드 제어를 이용한 3축 안정화 위성의 자세 제어및 강건성 해석)

  • 신동준;김진호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.692-695
    • /
    • 1997
  • Nonlinear robust attitude controller for 3-axis stabilized spacecraft is designed. Robust stability analysis for nonlinear spacecraft system with disturbance is conducted. External disturbances and parametric uncertainties decrease Spacecraft's attitude pointing accuracy. Sliding Mode Control(SMC) provides stability of system in the face of these disturbances and uncertainties. The concept of quadratic boundedness and quadratic stability are applied to the robust analysis for the nonlinear spacecraft system subject to bounded disturbance torques. Numerical simulation is conducted to compare the analysis result and actual nonlinear simulation. The simulation show that analysis result is valid.

  • PDF

Nonlinear Representation of Two-Stage Power-Factor-Correction AC/DC Circuits

  • Orabi Mohamed;Ninomiya Tamotsu
    • Journal of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.197-204
    • /
    • 2004
  • Two-stage Power-Factor-Correction (PFC) converters are the most common circuits for drawing sinusoidal and in phase current waveforms from an ac source with a good regulated output voltage. The first stage is a boost PFC converter with average-current-mode control for achieving the near-unity power factor and the second stage is a forward converter with voltage-mode control to regulate the output voltage. Stability analysis and design methods of two-stage PFC converters have previously been discussed using linear models. Recently, new nonlinear phenomena have been detected in pre-regulator boost PFC circuits and a new nonlinear model has been proposed for pre-regulated PFC converters. Therefore, investigation of two-stage PFC converters from the nonlinear viewpoint becomes important because the second stage DC/DC converter adds more complexity to the circuit. So, this paper introduces a study of the stability of two-stage PFC converters. A novel nonlinear model of two-stage PFC converters is proposed. Then, a stability analysis is made based upon this nonlinear model. The high correspondence between the simulated and experimental results confirms our analysis.

Nonlinear Stability Analysis of Boundary Layers by using Nonlinear Parabolized Stabiltiy Equations (Nonlinear PSE를 이용한 경계층의 비선형 안정성 해석)

  • Park, Dong-Hun;Park, Seung-O
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.9
    • /
    • pp.805-815
    • /
    • 2011
  • Nonlinear Parabolized Stability Equations(NSPE) can be effectively used to study more throughly the transition process. NPSE can efficiently analyze the stability of a nonlinear region in transition process with low computational cost compared to Direct Numerical Simulation(DNS). In this study, NPSE in general coordinate system is formulated and a computer code to solve numerically the equations is developed. Benchmark problems for incompressible and compressible boundary layers over a flat plate are analyzed to validate the present code. It is confirmed that the NPSE methodology constructed in this study is an efficient and effective tool for nonlinear stability analysis.

A NEW APPROACH TO EXPONENTIAL STABILITY ANALYSIS OF NONLINEAR SYSTEMS

  • WAN ANHUA
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.345-351
    • /
    • 2005
  • An effective method for analyzing the stability of nonlinear systems is developed. After introducing a novel concept named the point- wise generalized Dahlquist constant for any mapping and presenting its useful properties, we show that the point-wise generalized Dahlquist constant is sufficient for characterizing the exponential stability of nonlinear systems.

Development of Rotordynamic Analytical Model and Analysis of Vibration Response of a Turbocharger (터보차져의 로터다이나믹 해석모델 개발 및 진동응답 해석)

  • Kim, Byung-Ok;Lee, An-Sung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.5
    • /
    • pp.35-42
    • /
    • 2010
  • This paper deals with the development of analytical model of a turbocharger and its detail rotordynamic analysis. Two analytical models, which are verified by experimental modal testing, are proposed and the analytical model including rotor shaft extended to compressor and turbine wheel end side is chosen. A rotordynamic analysis includes the critical map, Campbell diagram, stability, and unbalance response, especially nonlinear transient response considering nonlinear fluid film force at bearings. Although the linearized analysis accurately predicts the critical speeds, stability limit, and stability threshold speed, the predicted vibration results are not valid for speeds above the stability threshold speed since the rotor vibrates with a subsynchronous component much larger than the one synchronous with rotor speed. Hence, for operating speed above the stability threshold, a nonlinear transient analysis considering nonlinear fluid film force must be performed in order to accurately predict vibration responses of rotor and guarantee results of analysis.

ON THE STABILITY AND INSTABILITY OF A CLASS OF NONLINEAR NONAUTONOMOUS ORDINARY DIFFERENTIAI, EQUATIONS

  • Sen, M.DeLa
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.243-251
    • /
    • 2003
  • This note Presents sufficient conditions for Lyapunov's stability and instability of a class of nonlinear nonautonomous second-order ordinary differential equations. Such a class includes as particular cases a remarkably large number of differential equations with specific physical applications. Two successive nonlinear transformations are applied to the original differential equation in order to convert it into a more convenient form for stability analysis purposes. The obtained stability / instability conditions depend closely on the parameterization of the original differential equation.

Nonlinear Buckling Analysis of H-Type Honeycombed Composite Column with Rectangular Concrete-Filled Steel Tube Flanges

  • Ji, Jing;Xu, Zhichao;Jiang, Liangqin;Yuan, Chaoqing;Zhang, Yunfeng;Zhou, Lijian;Zhang, Shilong
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1153-1166
    • /
    • 2018
  • This paper was concerned with the nonlinear analysis on the overall stability of H-type honeycombed composite column with rectangular concrete-filled steel tube flanges (STHCC). The nonlinear analysis was performed using ABAQUS, a commercially available finite element (FE) program. Nonlinear buckling analysis was carried out by inducing the first buckling mode shape of the hinged column to the model as the initial imperfection with imperfection amplitude value of L/1000 and importing the simplified constitutive model of steel and nonlinear constitutive model of concrete considering hoop effect. Close agreement was shown between the experimental results of 17 concrete-filled steel tube (CFST) specimens and 4 I-beams with top flanges of rectangular concrete-filled steel tube (CFSFB) specimens conducted by former researchers and the predicted results, verifying the correctness of the method of FE analysis. Then, the FE models of 30 STHCC columns were established to investigate the influences of the concrete strength grade, the nominal slenderness ratio, the hoop coefficient and the flange width on the nonlinear stability capacity of SHTCC column. It was found that the hoop coefficient and the nominal slenderness ratio affected the nonlinear stability capacity more significantly. Based on the results of parameter analysis, a formula was proposed to predict the nonlinear stability capacity of STHCC column which laid the foundation of the application of STHCC column in practical engineering.

Development of limit equilibrium method as optimization in slope stability analysis

  • Mendjel, D.;Messast, S.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.3
    • /
    • pp.339-348
    • /
    • 2012
  • The slope stability analysis is usually done using the methods of calculation to rupture. The problem lies in determining the critical failure surface and the corresponding factor of safety (FOS). To evaluate the slope stability by a method of limit equilibrium, there are linear and nonlinear methods. The linear methods are direct methods of calculation of FOS but nonlinear methods require an iterative process. The nonlinear simplified Bishop method's is popular because it can quickly calculate FOS for different slopes. This paper concerns the use of inverse analysis by genetic algorithm (GA) to find out the factor of safety for the slopes using the Bishop simplified method. The analysis is formulated to solve the nonlinear equilibrium equation and find the critical failure surface and the corresponding safety factor. The results obtained by this approach compared with those available in literature illustrate the effectiveness of this inverse method.

Modeling and Dynamic Stability Analysis of a Flying Beam Undertaking Pulsating Follower Forces Considering the Nonlinear Effect Due to Rigid Body Motion (강체운동 비선형 효과를 고려한 맥동 종동력을 받아 비행하는 보 구조물의 모델링 및 안정성 해석)

  • Hyun, Sang-Hak;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.510-515
    • /
    • 2000
  • Dynamic stability of a flying structure undertaking constant and pulsating axial forces is investigated in this paper. The equations of motion of the structure, which is idealized as a free-free beam, are derived by using the hybrid variable method and the assumed mode method. The structural system includes a directional control unit to obtain the directional stability. The analysis model presented in this paper considers the nonlinear effect due to rigid body motion of the beam. Dynamic stability of the system is influenced by the nonlinear effect. In order to examine the nonlinear effect, first the unstable regions of the linear system are obtained by using the method based upon Floquet's theory, and dynamic responses of the nonlinear system in the unstable region are obtained by using direct time integration method. Dynamic stability of the nonlinear system is determined by the obtained dynamic responses.

  • PDF

Identification of Linear and Nonlinear Dynamic Stability Characteristics of a Medium-size High-speed Turbocharger Rotor Supported by 3-lobe Bearings (3-로브 베어링으로 지지된 중형 고속 터보차저 로터의 선형 및 비선형 동적 안정성 특성 규명)

  • Lee, An-Sung;Kim, Byung-Ok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.6
    • /
    • pp.562-569
    • /
    • 2011
  • In this study linear and nonlinear dynamic stability characteristics of a medium-size high-speed turbocharger, whose rotor is supported by two 3-lobe journal bearings, are analyzed to evaluate and identify the effects of its bearing design variables. The rotor has the rated speed of 40,500 rpm and maximum continuous speed of 45,000 rpm. At first, utilizing the linear stability analysis method, bearing designs of yielding stable or unstable LogDecs as small as possible are searched by manipulating with machined bearing clearances and preloads. As next, utilizing the nonlinear analysis method, limit cycles of the rotor responses at the rated and maximum continuous speeds are simulated to check their acceptances. Results have shown that for the turbocharger rotor-bearing system considered, the 3-lobe journal bearing design with a smaller machined clearance and a larger preload are preferred for the stable rotor responses. More importantly, since there exists a good correlation between the linear and nonlinear stability analysis results, it is concluded that firstly the linear stability analysis method may be applied to screen quickly the ranges of bearing designs for stable or least unstable solutions and then, lastly the nonlinear stability analysis method may be deployed to check an absolute motion stability in terms of the limit cycle.