• 제목/요약/키워드: squash load

검색결과 7건 처리시간 0.016초

An approach for calculating the failure loads of unprotected concrete filled steel columns exposed to fire

  • Wang, Y.C.;Kodur, V.K.R.
    • Structural Engineering and Mechanics
    • /
    • 제7권2호
    • /
    • pp.127-145
    • /
    • 1999
  • This paper deals with the development of an approach for evaluating the squash load and rigidity of unprotected concrete filled steel columns at elevated temperatures. The current approach of evaluating these properties is reviewed. It is shown that with a non-uniform temperature distribution, over the composite cross-section, the calculations for the squash load and rigidity are tedious in the current method. A simplified approach is proposed to evaluate the temperature distribution, squash load, and rigidity of composite columns. This approach is based on the model in Eurocode 4 and can conveniently be used to calculate the resistance to axial compression of a concrete filled steel column for any fire resistance time. The accuracy of the proposed approach is assessed by comparing the predicted strengths against the results of fire tests on concrete filled circular and square steel columns. The applicability of the proposed approach to a design situation is illustrated through a numerical example.

Fuzzy 이론과 구조공학 적용 예 (콘크리트 충전 강관 단주의 압축강도 평가) (Fuzzy Theory and Its Application to Structural Engineering (Evaluation of Squash Load of Concrete-filled Tube))

  • 문지호;김정중;이태형
    • 전산구조공학
    • /
    • 제27권4호
    • /
    • pp.68-71
    • /
    • 2014
  • 본 학술기사에서는 최근 구조공학에 응용이 활성화되고 있는 퍼지 이론에 대하여 간단히 설명을 하였다. 그리고 퍼지이론의 구조공학 적용 예로, 본 저자가 수행한 퍼지이론을 이용한 원형 CFT의 구속응력 평가 과정을 간략히 소개하였다. 이 예에서도 알 수 있듯이 퍼지이론은 부정확성, 지식의 부족, 애매함에 기인하는 불확실성을 다루는데 있어 적합한 것을 알 수 있으며, 여러 불확성에 인하여 발생하는 오차를 줄이는데 적합한 것으로 판단된다.

Infilled steel tubes as reinforcement in lightweight concrete columns: An experimental investigation and image processing analysis

  • N.Divyah;R.Prakash;S.Srividhya
    • Computers and Concrete
    • /
    • 제33권1호
    • /
    • pp.41-53
    • /
    • 2024
  • Under constant and cyclic axial compression, square composite short columns reinforced with Self Compacting Concrete (SCC) added with scrap rubber infilled inside steel tubes and with different types of concrete were cast and tested. The test is carried out to find the effectiveness of utilizing an aggregate manufactured from industrial waste and to address the problems associated with the need for alternative reinforcements along with waste management. The main testing parameters are the type of concrete, the effect of fiber inclusion, and the significance of rubber-infilled steel tubes. The failure modes of the columns and axial load-displacement curves of the steel tube-reinforced columns were all thoroughly investigated. According to the test results, all specimens failed due to compression failure with a longitudinal crack along the loading axis. The fiber-reinforced column specimens demonstrated improved ductility and energy absorption. In comparison to the normal-weight concrete columns, the lightweight concrete columns significantly improved the axial load-carrying capacity. The addition of basalt fiber to the columns significantly increased the yield stress and ultimate stress to 9.21%. The corresponding displacement at yield load and ultimate load was reduced to 10.36% and 28.79%, respectively. The precision of volumetric information regarding the obtained crack quantification, aggregates, and the fiber in concrete is studied in detail through image processing using MATLAB environment.

Local buckling and shift of effective centroid of cold-formed steel columns

  • Young, Ben
    • Steel and Composite Structures
    • /
    • 제5권2_3호
    • /
    • pp.235-246
    • /
    • 2005
  • Local buckling is a major consideration in the design of thin-walled cold-formed steel sections. The main effect of local buckling in plate elements under longitudinal compressive stresses is to cause a redistribution of the stresses in which the greatest portion of the load is carried near the supporting edges of the plate junctions. The redistribution produces increased stresses near the plate junctions and high bending stresses as a result of plate flexure, leading to ultimate loads below the squash load of the section. In singly symmetric cross-sections, the redistribution of longitudinal stress caused by local buckling also produces a shift of the line of action of internal force (shift of effective centroid). The fundamentally different effects of local buckling on the behaviour of pin-ended and fixed-ended singly symmetric columns lead to inconsistencies in traditional design approaches. The paper describes local buckling and shift of effective centroid of thin-walled cold-formed steel channel columns. Tests of channel columns have been described. The experimental local buckling loads were compared with the theoretical local buckling loads obtained using an elastic finite strip buckling analysis. The shift of the effective centroid was also compared with the shift predicted using the Australian/New Zealand and American specifications for cold-formed steel structures.

Compressive performance with variation of yield strength and width-thickness ratio for steel plate-concrete wall structures

  • Choi, Byong-Jeong;Kim, Won-Ki;Kim, Woo-Bum;Kang, Cheol-Kyu
    • Steel and Composite Structures
    • /
    • 제14권5호
    • /
    • pp.473-491
    • /
    • 2013
  • The primary objectives of this paper are to describe the buckling patterns and to determine the squash load of steel plate-concrete (SC) walls. The major variables in this study were the width-thickness (B/t) ratio and yield strength of surface steel plates. Six SC walls were tested, and the results include the maximum strength, buckling pattern of steel plates, strength of headed studs, and behavior of headed studs. Based on the test results, the effects of the B/t ratio on the compressive strength are also discussed. The paper also presents recommended effective length coefficients and discusses the effects of varying the yield strength of the steel plate, and the effects of headed studs on the performance of SC structures based on the test results and analysis.

콘크리트 구속효과를 고려한 정사각형 CFT단주의 강도 (Strength of Square Shaped CFT Stub Column Considering the Confining Effect of Concrete)

  • 황원섭;김동조
    • 한국강구조학회 논문집
    • /
    • 제14권6호
    • /
    • pp.813-822
    • /
    • 2002
  • 단주영역에서 정사각형 콘크리트 충전 강관기둥의 단순 누가강도, 설계식 강도는 실험강도에 비해 약간 과소하게 평가하고 있다. 따라서 본 논문은 주요 요인이 되는 콘크리트의 구속효과를 고려하여 평가하고자 하였다. 콘크리트의 구속효과를 검토하기 위해 3차원 유한요소모델을 사용하여 강관의 폭-두께비(b/t), 콘크리트의 압축강도($f_c$'), 강재의 항복응력($f_y$)에 따른 영향을 검토하였고 이 세 변수를 조합한 제안된 강도식은 기존의 실험값과 비교, 검토되었다. 또한 하중 재하상태에 따른 콘크리트의 구속효과도 살펴 보았다.

콘크리트 충전 원형 및 각형 합성 강관 기둥의 압축 거동에 관한 실험적 연구 (An Experimental Study on the Compression Behavior of the Circular and Square Tubular Steel Pipe filled with Concrete)

  • 박강근
    • 한국공간구조학회논문집
    • /
    • 제6권1호
    • /
    • pp.55-63
    • /
    • 2006
  • 본 논문은 콘크리트 충전 원형 및 각형 합성 강관을 기둥부재로서의 적합성 및 적용성을 위한 연구로 두개의 강관을 합성한 콘크리트 충전 강관 기둥의 축압축 좌굴내력 및 변형형상에 대한 실험적 연구이다. 강관 기둥에 대한 연구는 콘크리트 충전 원형 강관 기둥, 콘크리트 충전 각형 강관 기둥, 콘크리트 충전 합성 강관 기둥으로 분류하여 실험을 수행하였다.

  • PDF