• Title/Summary/Keyword: squaring

Search Result 61, Processing Time 0.015 seconds

An Addition-Chain Heuristics and Two Modular Multiplication Algorithms for Fast Modular Exponentiation (모듈라 멱승 연산의 빠른 수행을 위한 덧셈사슬 휴리스틱과 모듈라 곱셈 알고리즘들)

  • 홍성민;오상엽;윤현수
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.7 no.2
    • /
    • pp.73-92
    • /
    • 1997
  • A modular exponentiation( E$M^{$=varepsilon$}$mod N) is one of the most important operations in Public-key cryptography. However, it takes much time because the modular exponentiation deals with very large operands as 512-bit integers. Modular exponentiation is composed of repetition of modular multiplications, and the number of repetition is the same as the length of the addition-chain of the exponent(E). Therefore, we can reduce the execution time of modular exponentiation by finding shorter addition-chain(i.e. reducing the number of repetitions) or by reducing the execution time of each modular multiplication. In this paper, we propose an addition-chain heuristics and two fast modular multiplication algorithms. Of two modular multiplication algorithms, one is for modular multiplication between different integers, and the other is for modular squaring. The proposed addition-chain heuristics finds the shortest addition-chain among exisiting algorithms. Two proposed modular multiplication algorithms require single-precision multiplications fewer than 1/2 times of those required for previous algorithms. Implementing on PC, proposed algorithms reduce execution times by 30-50% compared with the Montgomery algorithm, which is the best among previous algorithms.