• 제목/요약/키워드: square tubes

검색결과 120건 처리시간 0.024초

Stiffener configurations of beam to concrete-filled tube column connections

  • Dessouki, Abdelrahim K.;Yousef, Ahmed H.;Fawzy, Mona M.
    • Steel and Composite Structures
    • /
    • 제17권1호
    • /
    • pp.83-103
    • /
    • 2014
  • The objective of this research is to study the ultimate moment capacity of the connections between steel I-beams and concrete-filled steel tube columns using different stiffener configurations. The main parameters considered are column cross section shape, square or circular, and filling the column with concrete. This analytical study includes finite element models using ANSYS program taking geometric and material nonlinearities into consideration. These models are verified against the experimental results obtained from previous researches and current design guides. The results show that using proper stiffener configuration affects the stress distribution through the connection and increases the ultimate moment capacity of the connections. Also, circular column is advantageous than the square column for all stiffener configurations and dimensions.

보강된 정사각형 단면 강관의 정적 압괴거동에 관한 연구 (On Quasi-Static Crushing of a Stiffened Square Tube)

  • 백점기;정장영;전민성
    • 대한조선학회논문집
    • /
    • 제33권1호
    • /
    • pp.109-123
    • /
    • 1996
  • 본 연구에서는 판 구조물의 정적 압괴거동을 규명하기 위하여 보강되지 않은 시험체를 포함하여 압축하중 작용방향 뿐 아니라 직각방향 및 양방향으로 보강재가 부착된 정사각형 단면 강관에 대한 정적 압괴 실험을 수행하였다. 실험결과를 바탕으로 시험편의 유효 압괴길이와 평균 압괴강도를 조사하였고, 실용적인 압괴거동의 평가를 위해 등가 판두께의 개념을 제안하였다. 또한, 등가 판두께의 개념을 적용하여 보강된 정사각형 단면 강관의 평균 압괴강도의 계산을 위한 이론모델을 제시하고, 실험결과와의 비교를 통하여 그 정도와 유용성을 검증하였다.

  • PDF

Reliability-based assessment of American and European specifications for square CFT stub columns

  • Lu, Zhao-Hui;Zhao, Yan-Gang;Yu, Zhi-Wu;Chen, Cheng
    • Steel and Composite Structures
    • /
    • 제19권4호
    • /
    • pp.811-827
    • /
    • 2015
  • This paper presents a probabilistic investigation of American and European specifications (i.e., AISC and Eurocode 4) for square concrete-filled steel tubular (CFT) stub columns. The study is based on experimental results of 100 axially loaded square CFT stub columns from the literature. By comparing experimental results for ultimate loads with code-predicted column resistances, the uncertainty of resistance models is analyzed and it is found that the modeling uncertainty parameter can be described using random variables of lognormal distribution. Reliability analyses were then performed with/without considering the modeling uncertainty parameter and the safety level of the specifications is evaluated in terms of sufficient and uniform reliability criteria. Results show that: (1) The AISC design code provided slightly conservative results of square CFT stub columns with reliability indices larger than 3.25 and the uniformness of reliability indices is no better because of the quality of the resistance model; (2) The uniformness of reliability indices for the Eurocode 4 was better than that of AISC, but the reliability indices of columns designed following the Eurocode 4 were found to be quite below the target reliability level of Eurocode 4.

Seismic behavior of circular-in-square concrete-filled high-strength double skin steel tubular stub columns with out-of-code B/t ratios

  • Jian-Tao Wang;Yue Wei;Juan Wang;Yu-Wei Li;Qing Sun
    • Steel and Composite Structures
    • /
    • 제49권4호
    • /
    • pp.441-456
    • /
    • 2023
  • Aiming at the development trend of light weight and high strength of engineering structures, this paper experimentally investigated the seismic performance of circular-in-square high-strength concrete-filled double skin steel tubular (HCFDST) stub columns with out-of-code width-to-thickness (B/t) ratios. Typical failure mode of HCFDST stub columns appeared with the infill material crushing, steel fracture and local buckling of outer tubes as well as the inner buckling of inner tubes. Subsequently, the detailed analysis on hysteretic curves, skeleton curves and ductility, energy dissipation, stiffness degradation and lateral force reduction was conducted to reflect the influences of hollow ratios, axial compression ratios and infill types, e.g., increasing hollow ratio from 0.54 to 0.68 and 0.82 made a slight effect on bearing capacity compared to the ductility coefficients; the higher axial compression ratio (e.g., 0.3 versus 0.1) significantly reduced the average bearing capacity and ductility; the HCFDST column SCFST-6 filled with concrete obviously displayed the larger initial secant stiffness with a percentage 34.20% than the column SCFST-2 using engineered cementitious composite (ECC); increasing hollow ratios, axial compression ratios could accelerate the drop speed of stiffness degradation. The out-of-code HCFDST stub columns with reasonable design could behave favorable hysteretic performance. A theoretical model considering the tensile strength effect of ECC was thereafter established and verified to predict the moment-resisting capacity of HCFDST columns using ECC. The reported research on circular-in-square HCFDST stub columns can provide significant references to the structural application and design.

물의 포화풀비등에서 다발효과를 평가하기 위한 실험식 개발 (Development of an Empirical Correlation to Evaluate the Bundle Effect in Saturated Pool Boiling of Water)

  • 강명기
    • 대한기계학회논문집B
    • /
    • 제41권1호
    • /
    • pp.1-8
    • /
    • 2017
  • 대기압 하에서 포화 상태를 유지하는 물의 내부에 잠긴 탠덤 튜브에 적용하기 위한 실험적 상관식을 새롭게 개발하였다. 상관식은 다발효과를 계산하기 위한 것으로 실험에서 측정한 값과 최소자승법을 사용하여 결정하였다. 상관식의 적절함을 평가하기 위해 통계분석을 수행하였다. 상관식은 실험값을 ${\pm}8%$ 범위 내에서 잘 예측함을 확인하였다. 상관식의 적용 범위는 피치=28.5~114mm, 방위각=$0^{\circ}{\sim}90^{\circ}$, 경사각=$0^{\circ}{\sim}90^{\circ}$, 상부 및 하부 튜브 열유속=$0{\sim}120kW/m^2$이다.

Compressive and flexural behaviour of recycled aggregate concrete filled steel tubes (RACFST) under short-term loadings

  • Yang, You-Fu;Han, Lin-Hai
    • Steel and Composite Structures
    • /
    • 제6권3호
    • /
    • pp.257-284
    • /
    • 2006
  • The behaviour of hollow structural steel (HSS) stub columns and beams filled with normal concrete and recycled aggregate concrete (RAC) under instantaneous loading was investigated experimentally. A total of 40 specimens, including 30 stub columns and 10 beams, were tested. The main parameters varied in the tests were: (1) recycled coarse aggregate (RCA) replacement ratio, from 0 to 50%, (2) sectional type, circular and square. The main objectives of these tests were threefold: first, to describe a series of tests on new composite columns; second, to analyze the influence of RCA replacement ratio on the compressive and flexural behaviour of recycled aggregate concrete filled steel tubes (RACFST), and finally, to compare the accuracy of the predicted ultimate strength, bending moment capacity and flexural stiffness of the composite specimens by using the recommendations of ACI318-99 (1999), AIJ (1997), AISC-LRFD (1999), BS5400 (1979), DBJ13-51-2003 (2003) and EC4 (1994).

Infilled steel tubes as reinforcement in lightweight concrete columns: An experimental investigation and image processing analysis

  • N.Divyah;R.Prakash;S.Srividhya
    • Computers and Concrete
    • /
    • 제33권1호
    • /
    • pp.41-53
    • /
    • 2024
  • Under constant and cyclic axial compression, square composite short columns reinforced with Self Compacting Concrete (SCC) added with scrap rubber infilled inside steel tubes and with different types of concrete were cast and tested. The test is carried out to find the effectiveness of utilizing an aggregate manufactured from industrial waste and to address the problems associated with the need for alternative reinforcements along with waste management. The main testing parameters are the type of concrete, the effect of fiber inclusion, and the significance of rubber-infilled steel tubes. The failure modes of the columns and axial load-displacement curves of the steel tube-reinforced columns were all thoroughly investigated. According to the test results, all specimens failed due to compression failure with a longitudinal crack along the loading axis. The fiber-reinforced column specimens demonstrated improved ductility and energy absorption. In comparison to the normal-weight concrete columns, the lightweight concrete columns significantly improved the axial load-carrying capacity. The addition of basalt fiber to the columns significantly increased the yield stress and ultimate stress to 9.21%. The corresponding displacement at yield load and ultimate load was reduced to 10.36% and 28.79%, respectively. The precision of volumetric information regarding the obtained crack quantification, aggregates, and the fiber in concrete is studied in detail through image processing using MATLAB environment.

순수 굽힘 시험기를 이용한 연강 사각관의 굽힘 붕괴에 관한 실험적 연구 (An Experimental Study on Deep Collapse of Steel Tubes under Pure Bending)

  • KiM, C.S.;Chung, T.E.;Kang, S.Y.
    • 한국정밀공학회지
    • /
    • 제14권9호
    • /
    • pp.37-44
    • /
    • 1997
  • In this paper the bending collapse characteristics of square and rectangular steel tubes were studied with the pure bending test machine which apply pure bending moment without imposing shear and tensile forces. Under pure bending moment, delayed buckling modes occur and depend on test length and shape of section. For delayed mode, the endrgy of bending moment is absorbed by strain hardening energy. The pre- dictions of maximum moment and moment-rotation angle curve from those concepts are in good agreement with experimental observations.

  • PDF

튜브 배열에 따른 튜브/튜브시트 수압 확관 접합의 민감도 해석 (Sensitivity Analysis on Hydraulic Expanded Tube-to-Tubesheet Joints for Tube Layout Patterns)

  • 김동영;김태완
    • 대한기계학회논문집A
    • /
    • 제23권11호
    • /
    • pp.1896-1903
    • /
    • 1999
  • The basic requirements to improve the joints quality of tube-to-tubesheet for heat exchangers are to obtain high residual contact pressures between the tubes and the tubesheet as well as low residual stresses in the transition zone of the tubes. The residual contact pressures and residual stresses which govern the joint quality are influenced by parameters such as material properties, geometric dimension of tube and tubesheet and expansion pressures. There are two types of tube layout patterns, triangular and square, which are frequently used for heat exchangers. The purpose of the present work is to examine the superior tube layout patterns considering the joints quality by comparing numerical results from sensitivity analyses which were performed for both of tube layout patterns.

Ultrasonic NDE Classifications with the Gradient Descent Method and Synthetic Aperture Focusing Technique

  • Kim, Dae-Won
    • 비파괴검사학회지
    • /
    • 제25권3호
    • /
    • pp.189-200
    • /
    • 2005
  • Ultrasonic inspection methods are widely used for detecting flaws in materials. One of the more popular methods involves the extraction of an appropriate set of features followed by the use of a neural network for the classification of the signals in the feature space. This paper describes an approach which uses LMS method to determine the coordinates of the ultrasonic probe followed by the use of SAFT to estimate the location of the ultrasonic reflector The method is employed for classifying NDE signals from the steam generator tubes in a nuclear power plant. The classification results using this scheme for the ultrasonic signals from cracks and deposits within steam generator tubes are presented.