• Title/Summary/Keyword: square root model

Search Result 1,020, Processing Time 0.026 seconds

Development of Yield Forecast Models for Autumn Chinese Cabbage and Radish Using Crop Growth and Development Information (생육정보를 이용한 가을배추와 가을무 단수 예측 모형 개발)

  • Lee, Choon-Soo;Yang, Sung-Bum
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.2
    • /
    • pp.279-293
    • /
    • 2017
  • This study suggests the yield forecast models for autumn chinese cabbage and radish using crop growth and development information. For this, we construct 24 alternative yield forecast models and compare the predictive power using root mean square percentage errors. The results shows that the predictive power of model including crop growth and development informations is better than model which does not include those informations. But the forecast errors of best forecast models exceeds 5%. Thus it is important to establish reliable data and improve forecast models.

Integral Approximate Solutions to a One-Dimensional Model for Stratified Thermal Storage Tanks (성층화된 축열조의 1차원모델에 대한 적분 근사해)

  • Chung, Jae-Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.7
    • /
    • pp.468-473
    • /
    • 2010
  • This paper deals with approximate integral solutions to the one-dimensional model describing the charging process of stratified thermal storage tanks. Temperature is assumed to be the form of Fermi-Dirac distribution function, which can be separated to two sets of cubic polynomials for each hot and cold side of thermal boundary layers. Proposed approximate integral solutions are compared to the previous works of the approximate analytic solutions and show reasonable agreement. The approach, however, has benefits in mathematical difficulties, complicated solution form and unstable convergence of series solution founded in the previous analytic solutions. Solutions for a semi-infinite region, which have simple closed form solutions, give close agreement to those for a finite region. Thermocline thickness is obtained in closed form and shows proportional behavior to the square root of time and inverse proportional behavior to the square root of flow rate.

The Structural Equation Model of Intention to Discontinue Drinking Highly Caffeinated Beverage of Undergraduate Students

  • Lee, Kyu Eun;Kim, Yunsoo
    • Child Health Nursing Research
    • /
    • v.26 no.1
    • /
    • pp.35-46
    • /
    • 2020
  • Purpose: The purpose of this study was to test a model for intention to discontinuation drinking high caffeinated beverages among undergraduate students. This model was based on the Ajzen's theory of planned behavior and Becker's health belief model. Methods: Participants consisted of 201 undergraduate students. Data were collected by questionnaires from March 11 to May 24, 2019. Collected data were analyzed using SPSS/WIN 22.0, AMOS 22.0 program. Results: The assessment of the model indicated an acceptable fit (normed x2=1.65, goodness-of-fit index [GFI]=.83, adjusted GFI=.79, comparative fit index [CFI]=.92, standardized root mean square residual [SRMR]=.05, Tucker-Lewis index [TLI]=.91, normed fit index [NFI]=.87, root mean square error of approximation [RMSEA]=.07). Perceived behavior control, subjective norm, the subjective attitude was found to have a significant direct effect on the intention to discontinuation of drinking a high caffeinated beverage. The variances of this model explained 45.3% of the variance in intention to discontinuation of drinking a high caffeinated beverage. Conclusion: These results suggest that a need to increase awareness of adverse effects and potential risks of high caffeinated beverage consumption in undergraduate students. Besides, the university and government should provide education and campaigns to prevent excessive high-caffeinated beverage consumption.

Current Distribution and Effective Resistance in the Rail of a Distributed-type Railgun (분포형 레일건 레일에서의 전류분포 및 실효저항)

  • 임달호;구태만
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.10
    • /
    • pp.694-701
    • /
    • 1988
  • Distributed-type railguns are designed to maintain the armature current and the length between the armature and the current-feed region nearly constant with time. This paper deals with factors affecting current distribution, effective resistance and effective skin depth in the rail of a distributed-type railgun. Analytical solutions for the current distributions and resistance in the rail are presented for a simple two-dimensional model under steady-state contions. For diffusion limited current, it is found that effective rail resistance is proportional to the square root of the relative velocity, the permeability of the rail and the length between the armature and that effective skin depth of the rail is proportional to the square root of the length and inversely proportional to the square root of the permeability, the conductivity and the velocity.

Effect of zero imputation methods for log-transformation of independent variables in logistic regression

  • Seo Young Park
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.4
    • /
    • pp.409-425
    • /
    • 2024
  • Logistic regression models are commonly used to explain binary health outcome variable using independent variables such as patient characteristics in medical science and public health research. Although there is no distributional assumption required for independent variables in logistic regression, variables with severely right-skewed distribution such as lab values are often log-transformed to achieve symmetry or approximate normality. However, lab values often have zeros due to limit of detection which makes it impossible to apply log-transformation. Therefore, preprocessing to handle zeros in the observation before log-transformation is necessary. In this study, five methods that remove zeros (shift by 1, shift by half of the smallest nonzero, shift by square root of the smallest nonzero, replace zeros with half of the smallest nonzero, replace zeros with the square root of the smallest nonzero) are investigated in logistic regression setting. To evaluate performances of these methods, we performed a simulation study based on randomly generated data from log-normal distribution and logistic regression model. Shift by 1 method has the worst performance, and overall shift by half of the smallest nonzero method, replace zeros with half of the smallest nonzero method, and replace zeros with the square root of the smallest nonzero method showed comparable and stable performances.

Application of Machine Learning to Predict Web-warping in Flexible Roll Forming Process (머신러닝을 활용한 가변 롤포밍 공정 web-warping 예측모델 개발)

  • Woo, Y.Y.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.29 no.5
    • /
    • pp.282-289
    • /
    • 2020
  • Flexible roll forming is an advanced sheet-metal-forming process that allows the production of parts with various cross-sections. During the flexible process, material is subjected to three-dimensional deformation such as transverse bending, inhomogeneous elongations, or contraction. Because of the effects of process variables on the quality of the roll-formed products, the approaches used to investigate the roll-forming process have been largely dependent on experience and trial- and-error methods. Web-warping is one of the major shape defects encountered in flexible roll forming. In this study, an SVR model was developed to predict the web-warping during the flexible roll forming process. In the development of the SVR model, three process parameters, namely the forming-roll speed condition, leveling-roll height, and bend angle were considered as the model inputs, and the web-warping height was used as the response variable for three blank shapes; rectangular, concave, and convex shape. MATLAB software was used to train the SVR model and optimize three hyperparameters (λ, ε, and γ). To evaluate the SVR model performance, the statistical analysis was carried out based on the three indicators: the root-mean-square error, mean absolute error, and relative root-mean-square error.

A Structural Model on the Nursing Competencies of Nursing Simulation Learners (간호시뮬레이션 학습자의 간호역량에 관한 구조모형)

  • Park, Soo Jin;Ji, Eun Sun
    • Journal of Korean Academy of Nursing
    • /
    • v.48 no.5
    • /
    • pp.588-600
    • /
    • 2018
  • Purpose: The purpose of this study was to test a model of nursing competencies of nursing simulation learners. The conceptual model was based on the theory of Jeffries's simulaton theory. Methods: Data collection was conducted in October 2017 for 310 students from two nursing universities in Kyungbuk area for 20 days. Data analysis methods were covariance structure analysis using SPSS 21.0 and AMOS 22.0 statistical programs. Results: The hypothetical model was a good fit for the data. The model fit indices were comparative fit index=.97, normed fit index=.94, Tucker-Lewis Index=.97, root mean square error of approximation=.44, and standardized root mean square residual=.04. Teacher factors were directly related to simulation design characteristics, and it was confirmed that the curriculum, classroom operation and teaching method of the instructors were important factors. Learner factors were found to have a direct effect on nursing competence, self-confidence, and clinical performance that belong to nursing capacity. In particular, the results of this study indicate that the simulation design characteristics have a partial mediating effect on learner factors and clinical performance, and a complete mediating effect on learner factors and clinical judgment ability. Conclusion: In order to improve the learner's clinical performance and clinical judgment ability, it is necessary to conduct practical training through nursing simulation besides preparing the learner and the educator.

The Selection of Yield Response Model of Sugar beet (Beta vulgaris var. Aaron) to Nitrogen Fertilizer and Pig Manure Compost in Reclaimed Tidal Land Soil (간척지에서 질소비료 및 돈분 퇴비 시용에 따른 사탕무 (Beta vulgaris var. Aaron)의 수량 반응 해석을 위한 시비반응 모델 탐색)

  • Lim, Woo-Jin;Sonn, Yeon-Kyu;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.2
    • /
    • pp.174-179
    • /
    • 2010
  • In order to interpret yield response of sugar beet to nitrogen fertilizer, and pig manure compost in saline-sodic soil of reclaimed tidal land, 4 kinds of response model, i.e., quadratic, exponential, square root, and linear response, and plateau model, are applied. The root fresh yield of sugar beet decreased exponentially with the increase of soil EC. The root fresh yield of sugar beet to nitrogen fertilizer was fitted best to the linear response, and plateau model among 4 yield response models with highly significant determination coefficient ($R^2=0.92^{**}$). The optimum N rate determined on the model was 138 kg N $ha^{-1}$. The root fresh yield of sugar beet to pig manure compost was fitted best to the quadratic model among 4 yield response models with highly significant determination coefficient ($R^2=0.99^{**}$). The maximum N rate determined on the model was 9.17 ton $ha^{-1}$. In conclusion, the proper model to interpret the yield of sugar beet in saline-sodic soil differs with the kinds of nutrient, linear response, and plateau model for fertilizer nitrogen, and quadratic model to pig manure compost.

Equilibrium Moisture Contents and Thin Layer Drying Equations of Cereal Grains and Mushrooms (II) - for Oak Mushroom (Lentinus erodes) - (곡류 및 버섯류의 평형함수율 및 박층건조방정식에 관한 연구(II) - 표고버섯에 대하여 -)

  • Keum, D. H.;Kim, H.;Hong, N. U.
    • Journal of Biosystems Engineering
    • /
    • v.27 no.3
    • /
    • pp.219-226
    • /
    • 2002
  • Desorption equilibrium moisture contents of oak mushroom were measured by the static method using salt solutions at flour temperature levels of 35$\^{C}$, 45$\^{C}$, 55$\^{C}$ and 6$\^{C}$ and five relative humidity levels in the range from 11.0% to 90.8%. EMC data were fitted to the modified Henderson, Chung-Pfost, modified Halsey and modified Oswin models using nonlinear regression analysis. Drying tests far oak mushroom were conducted in an experimental dryer equipped with air conditioning unit. The drying test were performed in triplicate at flour air temperatures of 35$\^{C}$, 45$\^{C}$, 55$\^{C}$ and 65$\^{C}$ and three relative humidities of 30%, 50% and 70% respectively. Measured moisture ratio data were fitted to the selected four drying models(Lewis, Page, simplified diffusion and Thompson models) using stepwise multiple regression analysis. The results of comparing root mean square errors for EMC models showed that modified Halsey was the best model, and modified Oswin models could be available far oak mushroom. The results of comparing coefficients of determination and root mean square errors of moisture ratio for four drying models showed that Page model were found to fit adequately to all drying test data with a coefficient of determination of 0.9990 and root mean square error of moisture ratio of 0.00739.

Integer-Valued HAR(p) model with Poisson distribution for forecasting IPO volumes

  • SeongMin Yu;Eunju Hwang
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.3
    • /
    • pp.273-289
    • /
    • 2023
  • In this paper, we develop a new time series model for predicting IPO (initial public offering) data with non-negative integer value. The proposed model is based on integer-valued autoregressive (INAR) model with a Poisson thinning operator. Just as the heterogeneous autoregressive (HAR) model with daily, weekly and monthly averages in a form of cascade, the integer-valued heterogeneous autoregressive (INHAR) model is considered to reflect efficiently the long memory. The parameters of the INHAR model are estimated using the conditional least squares estimate and Yule-Walker estimate. Through simulations, bias and standard error are calculated to compare the performance of the estimates. Effects of model fitting to the Korea's IPO are evaluated using performance measures such as mean square error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE) etc. The results show that INHAR model provides better performance than traditional INAR model. The empirical analysis of the Korea's IPO indicates that our proposed model is efficient in forecasting monthly IPO volumes.