Kim, Jae Ho;Zhang, Zheng Yang;Wang, Yu Chao;Jang, So Eun;Lee, Tae Rin
Korea Science and Art Forum
/
v.30
/
pp.41-56
/
2017
This study is an intensive study on Tae Rin Lee's research results. A linear system for Estimating the Strength of Super Personal Conflict (ESSPC) in animations is proposed. Tae Rin Lee has extracted the Super Personal Conflict (SPC) shots of animations, and obtained the strength through the experts' psychological test experiment. The purpose of this study is to find a model that automatically computes the superpersonal conflict intensity value (ESSPC). By utilizing these results, 1) 20 image feature vectors are suggested for analyzing the SPC, and 2) a linear system is found for auto-calculating ESSPC by using the pseudo inverse matrix. The proposed system shows 9.25% root mean square error and the effectiveness is proven.
In underwater signal processing, separating individual signals from mixed signals has long been a challenge due to low signal quality. The common method using Short-time Fourier transform for spectrogram analysis has faced criticism for its complex parameter optimization and loss of phase data. We propose a Triple-path Recurrent Neural Network, based on the Dual-path Recurrent Neural Network's success in long time series signal processing, to handle three-dimensional tensors from multi-channel sensor input signals. By dividing input signals into short chunks and creating a 3D tensor, the method accounts for relationships within and between chunks and channels, enabling local and global feature learning. The proposed technique demonstrates improved Root Mean Square Error and Scale Invariant Signal to Noise Ratio compared to the existing method.
This study was designed to investigate the effect of vibratory stimulation on recovery of muscle function from delayed onset muscle soreness (DOMS). Volunteers performed 3 set of 70 % maximal voluntary eccentric muscle contraction and induced DOMS. volunteers were allocated to one of three treatment group after DOMS : group I (control), group II (ultrasound), group III (vibration). Maximal Voluntary Isometric Contraction (MVIC), Visual Analog Scale (VAS), Range Of Motion (ROM), Root Mean Square (RMS), Median frequency (MDF), Blood Serum Creatine Kinase (CK), Lactic dehydrogenase (LDH) were recorded at baseline, and 24, 48, 72 hours post-exercise. In MVIC measurement, there was a statistically significant difference in group III compared to group I (p < .05). In VAS measurements, there were a statistically significant difference in group II and III compared to group I (p < .05). In ROM measurement, there was a statistically difference in group II and III compared to group I (p < .05). In Muscle Volume with Ultrasonography measurement, there was no statistically significant difference in any groups (p > .05). In RMS and MDF measurement, there were a statistically significant difference in group II and III compared to group I (p < .05). In Blood samples of CK and LDH measurements, There were no statistically significant difference in any groups (p > .05). From the above result, Vibratory stimulation had a positive effect on recovery of muscle function from delayed onset muscle soreness. Further studies should be undertaken to ascertain the more effectiveness of vibratory stimulation and may be a promising treatment modality.
The Journal of the Korea institute of electronic communication sciences
/
v.18
no.6
/
pp.1151-1156
/
2023
In this paper, we propose a deep learning model that utilizes charge/discharge data from initial lithium-ion batteries to predict the remaining useful life of lithium-ion batteries. We build the DMP using the PNP model. To demonstrate the performance of DMP, we organize DML using the LSTM model and compare the remaining useful life prediction performance of lithium-ion batteries between DMP and DML. We utilize the RMSE and RMSPE error measurement methods to evaluate the performance of DMP and DML models using test data. The results reveal that the RMSE difference between DMP and DML is 144.62 [Cycle], and the RMSPE difference is 3.37 [%]. These results indicate that the DMP model has a lower error rate than DML. Based on the results of our analysis, we have showcased the superior performance of DMP over DML. This demonstrates that in the field of lithium-ion batteries, the PNP model outperforms the LSTM model.
Purpose: This study aimed to develop a nursing clinical judgment scale (NCJS) and verify its validity and reliability in assessing the clinical judgment of nurses. Methods: A preliminary instrument of the NCJS comprising 38 items was first developed from attributes and indicators derived from a literature review and an in-depth/focus interview with 12 clinical nurses. The preliminary tool was finalized after 7 experts conducted a content validity test based on a data from a preliminary survey of 30 hospital nurses in Korea. Data were collected from 443 ward, intensive care unit, emergency room nurses who voluntarily participated in the survey through offline and online for the verification of the construct validity and reliability of the scale. Results: The final scale comprised 23 items scored on a 5-point Likert scale. Six factors - integrated data analysis, evaluation and reflection on interventions, evidence on interventions, collaboration among health professionals, patient-centered nursing, and collaboration among nurse colleagues - accounted for 64.9% of the total variance. Confirmatory factor analysis supported the fit of the measurement model, comprising six factors (root mean square error of approximation = .07, standardized root mean square residual = .04, comparative fit index = .90). Cronbach's α for all the items was .92. Conclusion: The NCJS is a valid and reliable tool that fully reflects the characteristics of clinical practice, and it can be used effectively to evaluate the clinical judgment of Korean nurses. Future research should reflect the variables influencing clinical judgment and develop an action plan to improve it.
Han-Kyung Seo;Do-Cheol Choi;Cheol-Min Shim;Jin-Hyeong Jo
The Korean Journal of Nuclear Medicine Technology
/
v.27
no.2
/
pp.95-98
/
2023
Purpose: The precision error of a bone density meter reflects the equipment and reproducibility of results by an examiner. Precision error values can be expressed as coefficient of variation (CV), CV%, and root mean square-SD (RMS-SD). The International Society for Clinical Densitometry (ISCD) currently recommends using RMS-SD as the precision error value. When a 95% confidence interval is applied, the least significant change (LSC) value is calculated by multiplying the precision error value by 2.77. Exceeding the LSC value reflects a significant difference in measured bone density. Therefore, the LSC value of a bone density equipment is an essential factor for accurately determining a patient's bone density. Accordingly, we aimed to calculate the LSC value of a bone density meter (Lunar iDXA, GE) and compare it with the value recommended by the ISCD. We also assessed whether the value measured by the iDXA equipment was below the LSC value recommended by ISCD. Material and Methods: The bone densities of the lumbar spine and thighs of 30 participants were measured twice, and the LSC values were calculated using the precision calculation tool provided by the ISCD (http://www.iscd.org). To check the reproducibility of the measurement, patients were asked to completely dismount from the equipment after the first measurement; the patient was then repositioned before proceeding with the second measurement. Results: The LSC values derived using the CV% values recommended by the ISCD were 5.3% for the lumbar spine and 5.0% for the thigh. The LSC values measured using our bone density equipment were 2.47% for the lumbar spine and 1.61% for the thigh. The LSC value using RMS-SD was 0.031 g/cm2 for the lumbar spine and 0.017 g/cm2 for the thigh. Conclusion: that the findings confirm that the CV% value measured using our bone density meter and the LSC value using RMS-SD were maintained very stably. This can be helpful for obtaining accurate measurements during bone density follow-up examinations.
Journal of the Korea Society of Computer and Information
/
v.29
no.7
/
pp.73-80
/
2024
In this paper, we proposes a method to improve the accuracy of predicting the Korea Composite Stock Price Index (KOSPI) by combining topic modeling and Long Short-Term Memory (LSTM) neural networks. In this paper, we use the Latent Dirichlet Allocation (LDA) technique to extract ten major topics related to interest rate increases and decreases from financial news data. The extracted topics, along with historical KOSPI index data, are input into an LSTM model to predict the KOSPI index. The proposed model has the characteristic of predicting the KOSPI index by combining the time series prediction method by inputting the historical KOSPI index into the LSTM model and the topic modeling method by inputting news data. To verify the performance of the proposed model, this paper designs four models (LSTM_K model, LSTM_KNS model, LDA_K model, LDA_KNS model) based on the types of input data for the LSTM and presents the predictive performance of each model. The comparison of prediction performance results shows that the LSTM model (LDA_K model), which uses financial news topic data and historical KOSPI index data as inputs, recorded the lowest RMSE (Root Mean Square Error), demonstrating the best predictive performance.
Korean Journal of Agricultural and Forest Meteorology
/
v.26
no.2
/
pp.115-125
/
2024
Wind is a meteorological factor that has a significant impact on agriculture. Gust cause damage such as fruit drop and damage to facilities. In this study, low-altitude wind speed prediction was performed by applying physical models to Local Ensemble Prediction System (LENS). Logarithmic Law (LOG) and Power Law (POW) were used as the physical models, and Korea Ministry of Environment indicators and Moderate Resolution Imaging Spectroradiometer (MODIS) data were applied as indicator variables. We collected and verified wind and gust data at 3m altitude in 2022 operated by the Rural Development Administration, and presented the results in scatter plot, correlation coefficient, Root Mean Square Error (RMSE), Normalized Root Mean Square Error (NRMSE), and Threat Score (TS). The LOG-applied model showed better results in wind speed, and the POW-applied model showed better results in gust.
Kyung-won Lee;Dan-bi Ou;Ki-man Kim;Tae Hyeong Kim;Heechang Lee
The Journal of the Acoustical Society of Korea
/
v.43
no.4
/
pp.383-390
/
2024
When measuring the radiated noise of an underwater vehicle, the range information between the vehicle and the receiver is an important factor, but since Global Positioning System (GPS) is not available in underwater, an alternative method is needed. As an alternative, the range is measured by estimating the arrival time, arrival time difference, and arrival frequency difference using a separate acoustic signal. However, errors occur due to the channel environment, and these outliers become obstacles in continuously measuring range. In this paper, we propose a method to reduce errors by curve fitting with a function in the form of a V-curve as a post-processing to remove outliers that occurred in the process of measuring range information. Simulation, lake and sea trials were conducted to verify the performance of the proposed method. In the results of the lake trial, the range estimation error was reduced by about 85 % from the Root Mean Square Error (RMSE) point of view.
The ocean is linked to long-term climate variability, but there are very few methods to assess the short-term performance of forecast models. This study analyzes the short-term prediction performance regarding ocean temperature and salinity of the Global Seasonal prediction system version 5 (GloSea5). GloSea5 is a historical climate re-creation (2001-2010) performed on the 1st, 9th, 17th, and 25th of each month. It comprises three ensembles. High-resolution hindcasts from the three ensembles were compared with the Array for Real-Time Geostrophic Oceanography (ARGO) float data for the period 2001-2010. The horizontal position was preprocessed to match the ARGO float data and the vertical layer to the GloSea5 data. The root mean square error (RMSE), Brier Score (BS), and Brier Skill Score (BSS) were calculated for short-term forecast periods with a lead-time of 10 days. The results show that sea surface temperature (SST) has a large RMSE in the western boundary current region in Pacific and Atlantic Oceans and Antarctic Circumpolar Current region, and sea surface salinity (SSS) has significant errors in the tropics with high precipitation, with both variables having the largest errors in the Atlantic. SST and SSS had larger errors during the fall for the NINO3.4 region and during the summer for the East Sea. Computing the BS and BSS for ocean temperature and salinity in the NINO3.4 region revealed that forecast skill decreases with increasing lead-time for SST, but not for SSS. The preprocessing of GloSea5 forecasts to match the ARGO float data applied in this study, and the evaluation methods for forecast models using the BS and BSS, could be applied to evaluate other forecast models and/or variables.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.