• Title/Summary/Keyword: spur gear

Search Result 190, Processing Time 0.028 seconds

A Study on Development of Cold Forward Extrusion Process for Helical Gears of Automotive Transmissions (자동차 변속기용 헬리컬 기어의 냉간전방압출 공정 개발에 관한 연구)

  • Kim, H.S.;Lee, I.H.;Choi, S.T.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.20 no.7
    • /
    • pp.485-490
    • /
    • 2011
  • The application of helical gears in crucial parts of automotive transmissions has been steadily increasing due to their higher power transfer performance compared to spur gears. However, the traditional gear manufacturing methods such as hobbing and deburring require large cycle times with expensive production lines so that there have been intensive efforts trying to manufacture gears via forging processes. Although forging processes for spur and bevel type gears have been developed on the practical level, the manufacturing of helical gears is still dependent on the traditional cutting process. Therefore, this paper seeks to develop a cold forward extrusion process for the helical gear with the pitch diameter of 43.5mm and a helix angle of $18.4^{\circ}$. A forward extrusion process was used due to the relatively small diameter of the target geometry. The material deforming behavior influenced by the die geometry was examined by using CAE analysis. Finally, it was found that the helical gear manufactured by the developed extrusion process satisfied the dimensional accuracy and mechanical characteristics for automotive transmissions.

A Study on the Development of the Gear Design Program Using Auto_LISP (Auto_LISP을 이용한 기어설계 프로그램 개발에 관한 연구)

  • 이경원;반재삼;김종석;조규종
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.2
    • /
    • pp.36-42
    • /
    • 2002
  • After investigating repeatedly results obtained through gear stress analysis, we make a determination of an optimal gear shape. But its design process was not only complex but also difficult to get a precise profile curve from operating by hand. In this study, relating shape of gear profile curves was generated automatically with standard spur gear, equivalent helical gear, shifted gear & pinion by using developed program which is using Auto_LISP language in Auto-CAD. This program which can design rapidly gear shapes will successfully support gear designing and manufacturing fur Small & Medium companies.

A Study on the Automated Design System for Gear (기어설계 자동화 시스템에 관한 연구)

  • Cho, H.Y.;Nam, G.J.;Oh, B.K.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.730-733
    • /
    • 2001
  • A computer aided design system for spur, helical, bevel and worm gears by using AutoCAD system and its AutoLISP computer language was newly developed in this study. Two methods are available for a designer to draw a gear. The first method needs the gear design parameters such as pressure, module, number of tooth, shaft angle, velocity, materials, etc. When the gear design parameters are inputted, a gear is drawn in AutoCAD system and maximum allowable power and shaft diameter are calculated additionally. The second method calculates all dimensions and gear design parameters to draw a gear when the information such as transmission, reduction ratio, rpm, materials and pressure are inputted. The system includes four programs. Each program is composed of a data input module, a database module, a strength calculation module, a drawing module, a text module and a drawing edit module. In conclusion, the CAD system would be widely used in companies to find the geometric data and manufacturing course.

  • PDF

Strength Estimation of Injection Molded Plastic Stepped Spur Gear (사출 성형 플라스틱 단붙이 기어의 강도평가)

  • 정태형;문창기;하영욱
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.92-97
    • /
    • 2004
  • The aim of this study is to estimate the strength of injection molded plastic stepped gear. We considered stepped gear as plate model which are fixed by two edges. While, on the other sides are free. Normal gear is calculated by Lewis formula which can be derived quite simply from the equation for the stress at the root of a cantilever beam. Stress ratio(step factor) is represented for the ratio of the bending stress of normal and the bending stress of stepped gear, and it is plotted by face width factor. This study is propose the step factor added in Dupont equation which are strength estimation of step gear

  • PDF

Nonlinear Dynamic Analysis of Gear Driving System due to Transmission Error and Backlash (전달오차와 백래쉬에 의한 기어 구동계의 비선형 동특성 해석)

  • 최연선;이봉현;신용호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.69-78
    • /
    • 1997
  • Main sources of the vibration in gear driving system are transmission error and backlash. Transmission error is the difference of the rotation between driving and driven gear due to tooth deformation and profile error. Vibro-impacts induced by backlash between meshing gears lead to excessive vibration and noise in many geared rotation systems. Nonlinear dynamic characteristics of the gear driving system due to transmi- ssion error and backlash are investigated. Transmission error is calculated for spur gear. Nonlinear equation of motion for the gear driving system is developed with the calculated transmission error and backlash. Numerical analysis of the equation and the experimental results show the existence of meshing frequency, superharmonic compon- ents. Instability of the gear driving motion is found on the basis of Mathieu equation. Rattle vibration due to backlash is also discussed on the basis if nonlinear jump phenomenon.

  • PDF

A Study on Extrusion of Helical Gears by a Two-step Process (2단계공정을 이용한 헬리컬기어 압출에 관한 연구)

  • Jung S. Y.;Park J. H.;Kim C.;Kim C. H.;Choi J. C.;Choi S. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.04a
    • /
    • pp.85-91
    • /
    • 2002
  • Of all the many types of machine elements which exist today, gears are among the most commonly used. Many researches have been done to manufacture helical gears by cold forging and extrusion. Although cold forging and extrusion were applied to some bevel, spur, and helical gears, problems in connection with reducing forming load and tool life still make it difficult for the related methods to be commercialized. In this study, focusing on reducing load in forming helical gears, extrusion of helical gears by a two-step process is proposed. The process is composed of an extrusion step of spur gears used as preform and a torsion step of the preform to make helical gears. Upper-bound analysis for the two-step process is performed and compared with results of experiments. The newly proposed method can be used as an advanced forming technique to remarkably reduce the forming load and replace the conventional forming process of helical gears.

  • PDF

A Study on Extrusion of Helical Gears by a Two-step Process (2단계공정을 이용한 헬리컬기어 압출에 관한 연구)

  • Jung, S.Y.;Park, J.H.;Kim, C.;Kim, C.H.;Choi, J.C.;Choi, S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.824-828
    • /
    • 2002
  • Of all the many types of machine elements which exist today, gears are among the most commonly used. Many researches have been done to manufacture helical gears by cold forging and extrusion. Although cold forging and extrusion were applied to some bevel, spur, and helical gears, problems in connection with reducing forming load and tool life still make it difficult for the related methods to be commercialized. In this study, focusing on reducing load in forming helical gears, extrusion of helical gears by a two-step process is proposed. The process is composed of an extrusion step of spur gears used as preform and a torsion step of the preform to make helical gears. Upper-bound analysis for the two-step process is performed and compared with results of experiments. The newly proposed method can be used as an advanced forming technique to remarkably reduce the forming load and replace the conventional forming process of helical gears.

  • PDF

Evaluation of Bending Fatigue Testing of Austempered Ductile Iron Spur Gears (오스템퍼링 구상흑연주철 평기어의 굽힘피로시험평가에 관한 연구)

  • Lv, Jian Hua;Zhou, Rui;Xu, Yang;Qin, Zhen;Zhang, Qi;Lyu, Sungki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.1-7
    • /
    • 2020
  • An experimental evaluation of bending fatigue strength for austempered ductile iron (ADI) spur gears was performed using a Zwick fatigue tester. The gear material was manufactured using vertical continuous casting, resulting in the radius of the graphite grains being smaller. The stress-number of cycles curve (S-N curve) for the bending fatigue strength of the ADI spur gears thus manufactured, without any specific surface treatments, was obtained using post-processing software. It was observed that when the reliability was 50%, the allowable root stress was 610 MPa. was calculated using an analytical method as well as the finite element method, and the difference between the values calculated using the two methods is only 7%. This study provides a reliable basis to rate the reliability design of small gearboxes in automation in the future.

A Root Fillet Stress Calculation Method for Thin-Rimmed spur Gears (얇은 림 평치차의 이뿌리 응력 계산법)

  • Chong, Tae-Hyong;Choi, Jae-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.2
    • /
    • pp.89-105
    • /
    • 1991
  • A method to apply the approximation formulae[1] for tooth fillet and root stresses of a thin-rimmed rack to the calculation of stress state of thin-rimmed external and internal spur gears is introduced. The stress values by the method proposed in this paper have shown good agreement with those by the REM analysis and also by the stress measurement of strain survey investigation. By this method, reliable stress state at tooth fillet and root areas in the thin-rimmed external and internal spur gears can be easily calculated, and a practical design method for the bending strength of such thin-rimmed gears is established.

  • PDF