• Title/Summary/Keyword: spring tides

Search Result 66, Processing Time 0.033 seconds

Predicting Long-Term Shoreline Change Due to the Construction of Submerged Breakwaters in Manseongri Beach (잠제설치에 따른 만성리해빈에서 해안선의 장기변화 예측)

  • Park, Il Heum;Kang, Seong Wuk;Kang, Tae-Soon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.5
    • /
    • pp.527-535
    • /
    • 2016
  • The Manseongri Coast meets the sea on the southeast and is composed of coarse sediment as a mesotidal beach. The waves that strike the beach are stronger than the tides or tidal currents as external forces of beach deformation. Storm waves frequently reach significant wave heights of 2-3m and hit in spring and summer, leaving the sea calm during fall and winter. Incident waves reach remarkable heights that correspond with observed shoreline changes. The shoreline erodes in spring and summer due to these strong waves but recovers in fall and winter as a result of the more moderate waves. On the basis of these observed results, a numerical calibration for experiments on shoreline change was established. Results revealed that according to hindcast data, calculated shoreline changes agreed with the observed shoreline, with a minimum RMS error of 1.26m with calibration parameters $C_1=0.2$ and $C_2=1C_1$. Using these calibration parameters, long-term shoreline change was predicted after the construction of submerged breakwaters and jetties, etc. The numerical model showed that the shoreline would move forward by 5-15m behind the submerged breakwaters and recede by 5-15m north of the structure.

Winter Zonation of the Benthic Amphipods in the Sandy Shore Surf Zone of Dolsando, Southern Korea (돌산도 모래해안 쇄파대에 사는 저서성 단각류의 겨울철 대상분포)

  • SUH Hae-Lip;Yu Ok-Hwan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.3
    • /
    • pp.340-348
    • /
    • 1997
  • Sledge net samples were taken over the neap and spring tide cycles in January 1993 from the bottom and surface of 1 m depth and at the water's edge in the sandy shore surf zone of Dolsando, southern Korea. Zonation pattern of three dominant gammarid amphipods was compared. The amphipods were more abundant on the bottom and at water's edge than in the surface. Average densities at both sites of Pontogeneia rostrata and Allorchestes angusta were higher during the neap tide than the spring tide, whereas that of Synchelidium lenorostralum was lower during the neap tide. P. rostrata migrated horizontally during the flooding and ebbing tides, but S. lenorostralum and A. angusta did not. Unlike other species, P. rostrata was significantly more abundant at night, suggesting its active nocturnal movement. During flooding tide, P. rostrata was not found on the shore above the mean sea level (MSL) during daytime, but found in 100 cm above MSL at night. Zonal distribution of P. rostrata which was restricted from MSL to 250 cm below MSL, however, did not vary with the day-night cycle during ebbing tide. S. lenorostralum and A. angusta were not found during flooding tide but ebbing tide. The upper distribution limit of the former was 150 cm below MSL, and the distribution of the latter ranged from MSL to 150 cm below MSL. The highest densities of P. rostrata, S. lenorostralum and A. angusta were 32, 26 and 3 ind. $m^{-2}$, respectively. We discussed the relationships between the distribution pattern of three dominant species of gammarid amphipods and their life styles in the sandy shore.

  • PDF

Detection of Long Period Seismic Events by Using a Portable Gravity Meter, gPhone (이동식 중력계(gPhone)를 활용한 장주기 지진 이벤트 관측)

  • Lee, Won Sang;Seo, Ki-Weon;Eom, Jooyoung;Sheen, Dong-Hoon;Lee, Choon-Ki;Park, Yongcheol;Yun, Sukyoung;Yoo, Hyun Jae
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.1
    • /
    • pp.31-34
    • /
    • 2015
  • A gravity meter has been used for exploring subsurface mineral resources and monitoring long-period events such as Earth tides. Recently, researchers found several other intriguing features that we could even detect large teleseismic earthquakes and monitor seismic ambient noise using gravimeters. The zero-length spring suspension technology gives the gPhone (Micro-g LaCoste) excellent low frequency sensitivity, which may have implications for investigating much longer-period natural events (e.g., Earth's hum, tsunami waves, etc.). In this study, we present preliminary results through temporary operation of the gPhone at Geumsan in South Korea for 9 months (Nov. 2008-Jul. 2009). The gPhone successfully recorded large teleseismic events and showed a clear seasonal variation of the Double frequency microseisms during its operation period.

Characteristics of Tide-induced Flow and its Effect on Pollutant Patterns Near the Ocean Outfall of Wastewater Treatment Plants in Jeju Island in Late Spring (제주도 하수처리장 해양방류구 인근해역의 늦은 봄철 조류 특성과 조석잔차류에 의한 오염물질의 분포 특성)

  • KIM, JUN-TECK;HONG, JI-SEOK;MOON, JAE-HONG;KIM, SANG-HYUN;KIM, TAE-HOON;KIM, SOO-KANG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.2
    • /
    • pp.63-81
    • /
    • 2021
  • In this study, we investigated the tide-induced flow patterns near the ocean outfall of the Jeju and Bomok Wastewater Treatment Plants (WTP) in Jeju Island by using measurements of Acoustic Doppler Current Meter (ADCP) and a numerical experiment with inserting passive tracer into a regional ocean model. In late spring of 2018, the ADCP measurements showed that tidal currents dominate the flow patterns as compared to the non-tidal components in the outfall regions. According to harmonic analysis, the dominant type of tides is mixed of diurnal and semi-diurnal but predominantly semidiurnal, showing stronger oscillations in the Jeju WTP than those in the Bomok WTP. The tidal currents oscillate parallel to the isobath in both regions, but the rotating direction is different each other: an anti-clockwise direction in the Jeju WTP and a clockwise in the Bomok WTP. Of particular interest is the finding that the residual current mainly flows toward the coastline across the isobath, especially at the outfall of the Bomok WTP. Our model successfully captures the features of tidal currents observed near the outfall in both regions and indicates possibly high persistent pollutant accumulation along the coasts of Bomok.

Fluctuation of Tidal Front and Expansion of Cold Water Region in the Southwestern Sea of Korea (한국 남서해역에서 조석전선의 변동과 저수온역 확장기작)

  • Jeong, Hee-Dong;Kwoun, Chul-Hui;Kim, Sang-Woo;Cho, Kyu-Dae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.4
    • /
    • pp.289-296
    • /
    • 2009
  • The appearance and variation of cold water area and its expansion mechanism of tidal front in the south western coast of Korea in summer were studied on the basis of oceanographic data(1966-1995), satellite images from NOAA and SeaWiFs and numerical model. Cold water appearance in southwestern field of Jindo was due to the vertical mixing by strong tidal current. Tidal front where horizontal gradient of water temperature was more than $0.3^{\circ}C$/km parallels to contours of H/$U^3$ parameter 2.0~2.5 and the outer boundary of cold water region corresponds with contours of the parameter 2.5~3.0 in the southwestern sea of Korea during the period between neap and spring tides. The position replacement of tidal front formed in the study ares varies in a range of 25~75km and cold water region extends about 90km. These suggest that the magnitude of variation of frontal position and cold water area was proportionate to the tidal current during lunar tidal cycle. Moreover, it was estimated that the southwestward expansion of cold water region was derived from the southwestward tide-induced residual currents with speed more than 10cm/s.

  • PDF

Analysis of Tidal Asymmetric Characteristics in the Muan Bay (무안만의 조석비대칭적 특성 분석)

  • Kang, Ju Whan;Kim, Yang Seon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.3
    • /
    • pp.170-179
    • /
    • 2020
  • Tidal asymmetry would occur owing to shallow water tides at the Western Coast of macro tidal area. Especially, as ebb dominance of Mokpo coastal zone is known as the most prominent in Korea, it had been studied by domestic researchers. The cause of ebb dominance in Mokpo area is considered due to extensive inter-tidal zone in Muan Bay, and this has been studied based on amplification ratio, relative phase and skewness of tide/tidal flow curves in order to analyze qualitative tidal asymmetry. Furthermore, it was possible to figure out tidal characteristics with the difference of tidal amplitude and phase with Mokpo Harbor by observing the tide for 15 days in Muan Bay, which showed 40 minutes shorter ebbing time than at Mokpo Harbor. In addition, tidal flow prediction data in Mokpo North Harbor and Mokpo-Gu were analyzed. Meanwhile, the basis regarding qualitative interpretation of bed sediment and suspended sediment was provided by examining the qualitative changes in tidal asymmetry for spring-neap tidal cycle through the PCA/SWA indices. In addition, by examining long-term changes of ebb dominance in Mokpo Port, tidal characteristics of the past, present and future in this area, which is related to tidal asymmetry, is also provided.

Changes in Phytoplankton Communities and Environmental Factors in Saemangeum Artificial Lake, South Korea between 2006 and 2009 (2006년~2009년 새만금호에서 식물플랑크톤 군집과 환경요인의 변화)

  • Choi, Chung Hyun;Jung, Seung Won;Yun, Suk Min;Kim, Sung Hyun;Park, Jong Gyu
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.3
    • /
    • pp.213-224
    • /
    • 2013
  • Between May 2006 and November 2009, we investigated the relationship between fluctuations in environmental factors and phytoplankton communities in Saemangeum Artificial Lake, South Korea. Nutrient concentrations in the lake increased because of the inflow of water from Mankyung and Dongjin Rivers during the summer rainy season; in particular, high concentrations were detected at an inner zone close to the estuaries. During the summer rainy season, salinity at the inner zone reduced more rapidly than that at the other zones, and it was similar to the changes in nutrient concentrations. Variations in phytoplankton communities were caused by fluctuations in environmental factors: the abundance of phytoplankton at the inner zone was higher than that at the other zones. Diatoms were the dominant species in the phytoplankton communities. A small centric diatom, Skeletonema costatum like species, was predominant, with a mean abundance of 19.5% in Saemangeum lake. Because of accelerated eutrophication in the lake, phytoplankton abundance increased continuously and the total number of species present in the community decreased. In particular, some dinoflagellates could intermittently cause red tides during low temperature and salinity conditions (at the inner zone). In 2006~2007, a red tide-forming dinoflagellate, Prorocentrum minimum, was the predominant species, while Heterocapsa triquetra, Karlodinium veneficum, and Heterocapsa rotundata were the newly recorded species in late 2008 to early 2009. Therefore, the dynamics of phytoplankton communities under the perennially eutrophic conditions in Saemangeum lake appear to be primarily affected by changes in water temperature and salinity. In particular, the growth of harmful algae may have been accelerated by the low salinity and temperature conditions during the spring season at the inner zone.

On the Variations of Monthly Mean Sea Levels along the Coast of Korea (한국연안의 월평균해면의 변화에 대하여)

  • Sok-UYi
    • 한국해양학회지
    • /
    • v.2 no.1_2
    • /
    • pp.24-33
    • /
    • 1967
  • The variations of monthly mean sea levels along the coast of Korea anre studied graphic and harmonic methods with the data from 9 tides stations and compared with the variations of atmospheric pressure and the changes in density of sea water measured near some of the stations. The monthly mean sea level generally rises in Summer to Autumn, and falls in Winter to Spring and its range is from 20 cm to 50 cm. The variation of monthly mean sea level is of annual type, having one maximum and one minimum. The semi-range of annual components is 10.5 cm at Pusan and increases to the north in the west coast, to 20.8 cm at Inchon. It's phase is, on the whole, similar for the entire coast with about 210 (middle of August), except at Inchon, 200 . The variation of monthly mean sea level is mainly isostatic, or caused by those of sea water density and atmospheric pressure. Especially, the steric effect is predominant on the south- east coast around Pusan. However, in shallow long bays and estuaries on the west coast, the river runoff effect as well as local wind effect is also considerable. Magnitudes of annual variations at each stations are not constant, but widely variable from year to year. On the east and south coast, especially at Ulneungdo and Pusan the variations are large, which seem to be connected with the shifting of main current axes or current patterns in the offing.

  • PDF

Evaluation of Tidal Stream Resources Near Uido Using an ADCIRC Model (ADCIRC 모델을 이용한 우이도 주변해역의 조류자원 평가)

  • Jeong, Haechang;Nguyen, Manh Hung;Kim, Bu-Gi;Kim, Jun-Ho;Yang, Changjo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.2
    • /
    • pp.187-193
    • /
    • 2017
  • This study evaluated tidal stream energy resources according to tidal flow properties around Uido off the west coast of, Jeollanam-do, South Korea. A feasibility study was first carried out through the collection of bathymetry data and tidal phase information. For this simulation, a depth-averaged 2D ADCIRC (Advanced Circulation) model for real sea situations was applied to a Finite Element Method (FEM) approach for tides given the variation of tidal current speed. Hydrodynamics were simulated with 4 major tidal constituents (M2, S2, K1, and O1) after setting up 4 observation points. From the real depth-averaged model simulation results, it was found that the spring tide Higher High Water (HHW) and tidal current speed values at the 4 observation points were about 2.2 m and 1.33 m/s, respectively. The ADCIRC model results were analyzed with reference to the Korea Hydrographic and Oceanographic Agency's (KHOA) observed data for verification. Furthermore, using topographical characteristics via the Tidal Flux Method (TFM), tidal energy density distribution was calculated, indicating a maximum tidal energy density of about $1.75kW/m^2$ for the 5 assessment areas around Uido. The tidal energy density was evaluated with consideration given to topographical characteristics as well as tidal elevation and tidal current speed to determine an optimum tidal farm candidate.

A Study on the Tidal Energy Yield Capability according to the Yaw Angle in Jangjuk Strait (장죽수도에서의 요각변화에 따른 조류에너지 생산량에 관한 연구)

  • Tran, Bao Ngoc;Choi, Min Seon;Yang, Changjo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.982-990
    • /
    • 2019
  • The interest of researchers and governments in exploiting tidal energy resources is increasing. Jangjuk strait is a place with high tidal energy density potential and is therefore appropriate for the constructing of a tidal turbine farm. In this study, a numerical approach is presented to evaluate the current flow and power potential in Jangjuk strait with an ADCIRC model. Then, the tidal field characteristics are utilized as input parameters for tidal resource calculation with an in-house program. The 1 MW scale tidal energy converter devices are employed and arranged in 4 layouts to investigate the annual energy yield as well as flow deficit due to the wake ef ect at the surveyed area. The best-performed array generates an annual energy yield up to 12.96 GWh/year (without considering the wake effect); this value is reduced by 0.16 GWh/year when accounting for the energy loss caused by the flow deficit. Moreover, by altering the turbine yaw angle during the flood and ebb tides, the impacts of this factor on the energy extraction are analyzed. This indicates that the turbine array attains the maximum tidal power when the turbine yaw angle is at 346° and 164° (clockwise, to the North) for the spring and neap tide in turns.