• Title/Summary/Keyword: spring element

Search Result 792, Processing Time 0.022 seconds

Investigation of fresh concrete behavior under vibration using mass-spring model

  • Aktas, Gultekin
    • Structural Engineering and Mechanics
    • /
    • v.57 no.3
    • /
    • pp.425-439
    • /
    • 2016
  • This paper deals with the behavior of fresh concrete that is under vibration using mass-spring model (MSM). To this end, behaviors of two different full scale precast concrete molds were investigated experimentally and theoretically. Experiments were performed under vibration with the use of a computer-based data acquisition system. Transducers were used to measure time-dependent lateral displacements at some points on mold while mold is empty and full of fresh concrete. Analytical modeling of molds used in experiments were prepared by three dimensional finite element method (3D FEM) using software. Modeling of full mold, using MSM, was made to solve the problem of dynamic interaction between fresh concrete and mold. Numerical displacement histories obtained from time history analysis were compared with experimental results. The comparisons show that the measured and computed results are compatible.

A New Manufacturing Process for the Ring Plate of Automotive Fuel Tank (자동차 연료탱크용 링 플레이트의 신 제조공법)

  • Chae, M.S.;Lim, Y.H.;Suh, Y.S.;Park, C.D.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.17 no.5
    • /
    • pp.350-355
    • /
    • 2008
  • Currently, in the automotive industry, the efforts to reduce the manufacturing cost by changing the manufacturing process are continually performed. In this paper, we proposed a new manufacturing process, the roll bending process of a ring plate of automotive fuel tank instead of conventional press blanking process to reduce material loss and manufacturing cost. Finite element analysis was used to optimize the roll bending process to assure rectangular cross-section of the ring plate. Also, spring-back analysis after the roll bending process was performed and dimension of the bending die considering spring-back was analyzed. Finally, we verified a possibility for realization of the proposed method with prototypes.

The Stability Analysis of Timoshenko Beam-Column on Pasternak Foundation (Pasternak지반 위에 놓인 Timoshenko보-기둥의 안정해석)

  • Lee, Yong-Soo;Lee, Byoung Koo;Kim, Sun Gyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.1
    • /
    • pp.91-100
    • /
    • 2001
  • This paper is to analyze the stability of Timoshenko beam-column on Pasternak foundation, with the extensional and the rotational spring at center point of span by Finite Element Method. To verify this Finite Element Method, the results by the proposed method are compared with the existing solutionsof Timoshenko beam-column without the extensional and the rotational spring and the shear foundation. The dynamic stability regions are decided by the dynamic stability analysis of Timoshenko beam-column on Pasternak foundation with the extensional and the rotation spring at center point of span.

  • PDF

A Stress Analysis on One-touch Fitting of Pneumatic Systems (공기압용 순간 연결식 관연결구의 응력 해석)

  • Chang, Y.J.;Kim, Youn-J.;Kim, I.S.;Hwang, B.O.;Lee, W.R.;Lim, S.B.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.871-876
    • /
    • 2001
  • One-touch fittings are important components that can make a quick and tight connection between pneumatic pipe systems. In this study, the stress analyses with various working pressures on these one-touch fittings are carried out using finite element method. Material properties, to use the stress analyses, are measured by the universal tester and digital Vickers hardness tester. The stress analyses on the circular shell spring forced by various pressures(100, 150, 200, 250kpa) and on the main body due to the fluid-structural interaction are investigated. Results show that the stresses of one-touch fitting are concentrated to supported part of main body and the soundness of a circular shell spring with maximum pressure 250kpa was confirmed.

  • PDF

A New Manufacturing Process for the Ring Plate of Automobile Fuel Tank (자동차 연료탱크용 링 플레이트의 신 제조공법)

  • Chae, M.S.;Lim, Y.H.;Suh, Y.S.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.311-315
    • /
    • 2008
  • Currently, in automobile industry. the efforts to reduce the manufacturing cost by changing the process of manufacturing are continually performed. In this paper, we proposed a new manufacturing process, the roll bending of a ring plate of automotive fuel tank instead of conventional press blanking process to reduce material loss and manufacturing cost. Finite element analysis was used to optimize the roll bending process to assure rectangular cross-section of the ring plate. Also, spring-back analysis after the roll bending was performed and dimension of the bending die considering spring-back was analyzed. Finally, we verified a possibility for realization of the proposed method shape with prototypes.

  • PDF

Dynamic Stability of a Drum-brake Shoe Under a Pulsating Frictional Force (주기적인 마찰력을 받는 드럼-브레이크 슈의 동적안정성)

  • 류봉조;오부진;임경빈;김효준
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.11
    • /
    • pp.890-896
    • /
    • 2002
  • This paper deals with the dynamic stability of a brake shoe under pulsating frictional forces. A lining part of brake systems is assumed as a distributed spring, and the supported elements of a shoe are assumed as translational springs for a constant distributed frictional force and a pulsating frictional force. Governing equations are derived by the use of the extended Hamilton's principle, and numerical results are calculated by finite element method. The critical distributed frictional force and instability regions were investigated for the change of distributed spring constants and translational spring constants.

Shape Design of Initial Section for Non-circular Shaped Mold Spring (비원형 단면을 갖는 금형스프링의 단면설계)

  • Lee, Hyoungwook;Choi, Hwaryong
    • Journal of Institute of Convergence Technology
    • /
    • v.1 no.1
    • /
    • pp.24-28
    • /
    • 2011
  • The purposes of this study are predictions of the changes in the section geometry and determination of the initial cross section so that opposite side in height direction is exactly parallel after coiling process. Finite element analysis is carried out for the calculation of the sectional changes for mold spring item. Analysis results reveal that the slope of the top and bottom sides varies in the range of 5 to 8 degrees and the amount depends on the dimension of the outer diameter. The slopes of the sides should be defined first among design variables.

  • PDF

A couple Voronoi-RBSM modeling strategy for RC structures

  • Binbin Gong;Hao Li
    • Structural Engineering and Mechanics
    • /
    • v.91 no.3
    • /
    • pp.239-250
    • /
    • 2024
  • With the aim to provide better predication about fracture behavior, a numerical simulating strategy based on the rigid spring model is proposed for reinforced concrete (RC) structures in this study. According to the proposed strategy, concrete is partitioned into a series of irregular rigid blocks based on the Voronoi diagram, which are connected by interface springs. Steel bars are simulated by bar elements, and the bond slip element is defined at bar element nodes to describe the interaction between reinforcement and concrete. A concrete damage evolution model based on the separation criterion is adopted to describe the weakening process of interface spring between adjacent blocks, while a nonlinear bond slip model is introduced to simulate the synergy behaviour of reinforced steel bars and concrete. In the damage evolution model of concrete, the influence of compressive stress perpendicular to the interface on the shear strength is considered. To check the effectiveness and applicability of the proposed modelling, experimental and numerical studies about a simply-supported RC beam and the two-notched concrete plates in Nooru-Mohamed's experiment are conducted, and the grid sensitivity are investigated.

A FEM study about the initial stress distribution on canine altered by the application point of preangulated TMA T-loop spring (Preangulated TMA T-loop spring의 적용 위치 변화에 따른 견치의 초기 응력 분포에 대한 유한 요소법적 연구)

  • Kim, Jung-Min;Cha, Kyung-Suk;Lee, Jin-Woo
    • The korean journal of orthodontics
    • /
    • v.29 no.5 s.76
    • /
    • pp.521-534
    • /
    • 1999
  • The purpose of this study was to find the difference of stress distribution on canine altered by the application point of preangulated T-loop spring. For this study, the finite element models of upper left canine, upper left second premolar and upper left first molar were made. Also, the finite element models of $0.017{\times}0.025$ inch preangulated, preactivated T-loop spring and $0.018{\times}0.025$ inch stainless steel wire were made. Three types of T-loop spring were made . the middle of activated T-loop is positioned in accordance with the middle position of distance of bracket position of both the canine and first molar, 2mm anterior, 2mm posterior. We compared the forces and the distribution of stress that were generated by the difference of position of T-loop spring. The results were as follows. 1. All of the 3 types of T-loop spring showed the similar retraction forces. 2. All showed the similar amount & pattern of stress distribution. 3. The centers of rotation of canine in 3 types of T-loop spring were same and were positioned between C and D plane. 4. The canine showed the intrusive force by 2mm anterior positioned T-loop spring, but the extrusive force by 2mm posterior positioned T-loop suing. Neverthless, because of the small amount of the forces, the effect of vertical force was not significant.

  • PDF

Rollover Analysis of a Bus using Beam Element and Nonlinear Spring Characteristics (보 요소와 비선형 스프링 특성을 이용한 버스 전복 해석)

  • Park, Su-Jin;Yoo, Wan-Suk;Kwon, Yuen-Ju;Kim, Jin-Bae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.56-63
    • /
    • 2007
  • In case of bus rollover, the body structure of the bus should be designed to ensure the survival space for passengers. So, this study focuses on evaluating rollover strength through a computer simulation using the commercial code, LS-DYNA3D at the initial stage of vehicle development. For this study, section structure was modeled using a simple beam element, and impact boundary conditions required by ECE(Economic Commission for Europe) regulation No.66 were applied. In order to confirm the validity of the beam element bus model, the results compared with the test results and shell element bus model. The analysis errors from beam element bus model are due to the difference in strain energy of joint area between beam and shell model. In this study, a method for the joint modeling was suggested by using nonlinear springs to which the collapse mechanisms were applied.