• Title/Summary/Keyword: spraying pressure

Search Result 128, Processing Time 0.022 seconds

Spraying and Combustion Characteristics of Heavy Oil in the Gun Type Burner for Hot Air Heater (온풍난방기용 건타입 중유버너의 분사특성과 연소특성)

  • 김영중;유영선;장진택;윤진하;연태용
    • Journal of Biosystems Engineering
    • /
    • v.24 no.2
    • /
    • pp.107-114
    • /
    • 1999
  • To find the best combustion conditions in the heavy oil burner kinetic viscosity of heavy oil A, B and C at different temperature range, from 40 to 140$^{\circ}C$, and the droplet sizes of the heavy oils at different temperature and pump pressure were measured. And, combustion characteristics were investigated under the different conditions : two different heavy oil and three different oil temperature. At temperature of 70, 100, 130$^{\circ}C$ the kinetic viscosity of heavy oil A and B are 7.9, 5.7, 4.3 and 30.4, 13.7, 7.9cSt, respectively. The greatest and smallest viscosity were 7,455 cSt at C oil on 27$^{\circ}C$ and 4.26cSt at A oil on 140$^{\circ}C$. The magnitude of viscosity difference between at 100$^{\circ}C$ and 140$^{\circ}C$ under 6 cSt in cases of A and B oil, but more than 30cST on C oil. Of the droplet sizes, the biggest and smallest droplet size in A oil were 98$\mu\textrm{m}$ at oil temperature of 130$^{\circ}C$(4.3cSt), pump pressure of 1.57MPa and 72$\mu\textrm{m}$ at 70$^{\circ}C$(7.9cSt), 2.35MPa, respectively. It appeared that as spraying pressure increased the droplet size decreased, however, no distinct differences were found in the effects of kinetic viscosity on the droplet sizes of the test range. The best combustion performance was observed when droplet size, spraying pressure and oil temperature were 73$\mu\textrm{m}$, 2.35MPa and 70$^{\circ}C$ producing CO2 of 13.1%, CO of 13ppm and flue gas temperature of 250$^{\circ}C$ in A oil combustion For B oil, it was100$^{\circ}C$, 2.35MPa, 52$\mu\textrm{m}$, producing CO2 of 10ppm and flue gas temperature of 260$^{\circ}C$. In general, it appeared that better combustion results were observed in the smaller droplets produced burner condition.

  • PDF

Analysis of Spray Characteristics of Tractor-mounted Boom Sprayer for Precise Spraying

  • Kim, Ki-Duck;Lee, Hyeon-Seung;Hwang, Seok-Joon;Lee, Young-Joo;Nam, Ju-Seok;Shin, Beom-Soo
    • Journal of Biosystems Engineering
    • /
    • v.42 no.4
    • /
    • pp.258-264
    • /
    • 2017
  • Purpose: This study determines the spray characteristics and effective spray width of a tractor-mounted commercial boom sprayer through experiments. Methods: Performance tests were conducted to investigate the spray characteristics of the nozzles on a commercial boom sprayer. The flow rate and spray width of a single nozzle were measured at three levels of spray pressure (0.5, 0.7, and 1.0 MPa) and spray height (15, 30, and 45 cm), respectively. The average value of three repetition tests was used as the representative value. A coefficient of variation (CV) was used as an index of spray uniformity, and the width that guarantees CV values of approximately 15% was determined as the effective spray width. The spray characteristics of the overall boom sprayer were derived analytically by superimposing the spray characteristics of a single nozzle. Results: The test results for a single nozzle showed that the spray width tended to increase as the spray height and spray pressure increased. The effective spray width for a single nozzle was the largest at a spray pressure of 1.0 MPa and spray height of 45 cm, which resulted in a coverage of 84 cm of width. The effective spray width for the entire boom sprayer was also the largest at the spray pressure of 1.0 MPa and spray height of 45 cm, with a magnitude of 424.5 cm. The chemical spraying work in an actual field was simulated by applying a spray width of 400 cm. As a result of the operation for three swaths, the CV value was less than 10% for 1,200 cm of the overall spray width, which meant that uniform application was achieved. Conclusions: It was reasonable to set the effective spray width of the boom sprayer used in this study to 400 cm.

A Study of Correlation between DCA and WHS in Fin-and-Tube Heat Exchanger (핀-관 열교환기에서 동적접촉각과 물맺힘량과의 상관관계에 관한 연구)

  • 황준현;고영환;신종민
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.10
    • /
    • pp.786-791
    • /
    • 2002
  • An experimental study on the behavior of the water hold-up by spraying of a fin-and-tube heat exchanger with regard to the surface characteristics, i.e., contact angles, was conducted. The dynamic contact angles (DCA) were measured, and water hold-up by spraying (WHS) was conducted in the experiment. It is found that heat exchanger surface characteristics, spray pressure, spray water temperature and heat exchanger surface temperature play an important role in WHS. In order to evaluate relationship between WHS and surface characteristics, test conditions are determined through a contour analysis. A correlation was proposed to predict WHS as a function of DCA. With its test efficiency and consuming time, the prediction method can be used to evaluate WHS performance.

Analysis of Machined Surface Morphology According to Changes of Surface Condition in Micro Particle Blasting (미세입자 분사가공 시 표면 조건 변화에 따른 가공 표면 형상 분석)

  • Choi, Sung-Yun;Hwang, Cheol-Ung;Kwon, Dae-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.70-75
    • /
    • 2018
  • This study analyzes the change of Al 6061-T6 specimen surface shape when undergoing microparticle spraying and analyzes the influence of factors on the experiment. Fine particle spraying is applied to the specimen and the surface shape of the processed surface is measured through a surface shape measuring device. The measured data was analyzed by the ANOVA method to investigate the effect of factors such as particle, nozzle diameter, pressure, injection height, and injection time on the injection depth and injection diameter.

The Development of Functional Photocatalytic $TiO_2$-Biodegrdable Plastic Composite Material by HVOF Spraying (고속가스플래임 용사법을 이용한 광촉매 $TiO_2$-생분해성 플라스틱 복합재료의 개발)

  • Bang, Hee-Seon;Bang, Han-Sur;Ohmori, Akira
    • Journal of Welding and Joining
    • /
    • v.24 no.5
    • /
    • pp.57-61
    • /
    • 2006
  • For the production of functional $TiO_2$-biodegradable plastic (polybutylene succinate:PBS) composite material with photocayalytic activity, we attempted to prepare $TiO_2$ coatings on PBS substrate by HVOF and plasma spraying techniques under various conditions. The microstructures of coatings were characterized with SEM and XRD analysis, and the photocatalytic efficiency of coatings was evaluated by the photo degradation of gaseous acetaldehyde. The effects of primary particle size and spraying parameters on the formation behavior, photocatalytic performance of the coatings have been investigated. The results indicated that for both the HVOF sprayed $P_{200}$ and $P_{30}$ coatings, the high anatase ratio of 100% can be achieved regardless of fuel gas pressure. On the other hand, the HVOF sprayed $P_7$ coating exhibited a largely decreased anatase ratio (from 100% to 49.1%) with increasing the fuel gas pressure, which may be attributed to much higher susceptibility of heat for 7 nm agglomerated powder. HVOF sprayed $P_{200}$ and $P_{30}$ coatings show better performance as compared to that of plasma sprayed $P_{200}$ coatings owing to the higher anatase ratio. However, the HVOF sprayed $P_7$ coatings did not show the photocatalytic activity, which may result from the extremely small reaction surface area to the photocatalytic activity and low anatase ratio.

Evaluation of an Air-jet and Roller Type Corn-husker (공기분사 및 회전 롤러를 이용한 옥수수 포엽 제거장치의 시험)

  • Park, Hoe-Man;Cho, Kwang-Hwan;Hong, Seong-Gi;Lee, Sun-Ho
    • Journal of Biosystems Engineering
    • /
    • v.35 no.3
    • /
    • pp.163-168
    • /
    • 2010
  • With income growth and "well-being" trends, sales of corn has been increased recently. Corns are processed at processing facilities on the main production site. Corn processing steps include removing bract, steaming, vacuum packing, and storing. To replace manual corn bract removing, some bract removing machines were imported and used. However, the machines were abandoned shortly, because of high damaging ratio of corns. In this research, factors of successful bract removing was studied with rotating rollers and air-injection nozzles to develop corn bract removing system. The test device was composed of a cylindrical roller, an air spray nozzle, a regulator, and a motor. Designing factors were roller type, diameter of air spraying nozzle, spraying angle, and spraying pressure. The measured factors were bract removing rate and damaging rate. It was found that optimum cylindrical roller surface shape was cylindrical roller and linear grove roller. This roller shape produced lowest damaging rate. Test results of the efficacy of preprocessing showed that the air spraying after preprocessing produced highest performance. The rotational speed and inclination of the roller didn't affect the bract removing performance. Optimum injection angle of the air jet nozzle was $70^{\circ}$. To increase bract removing rate and to reduce corn damage, required injection pressure and injection nozzle diameter were decided to less than 0.4 MPa and 2.5 mm, respectively. More than 3 times of nozzle passing produced good bract removing performance and there were no significant difference between the number of passing times.

A Study on Characteristics of Durability for Plunger of High Speed and Ultra-High Pressure Reciprocating Pump Using High Velocity Oxygen Fuel Spraying (초고속 용사 적용 고속 초고압 왕복동 펌프 플런저의 내구성 특성에 관한 연구)

  • Bae, Myung-Whan;Park, Byoung-Ho;Jung, Hwa;Park, Hui-Seong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.20-28
    • /
    • 2014
  • The high velocity oxygen fuel spraying (HVOF) is a kind of surface modification process technology to form the sprayed coating layer after spraying the powder to molten or semi-molten state by the ultra-high speed at the high-temperature heat source and conflicting with a substrate. It is desirable to melt completely the thermal spray powder in order to produce the coating layer with an optimal adhesion, however, because a semi-molten powder in a spray process has the low efficiency and become a factor that degrades the mechanical property by the inducement of pore-forming within the coating layer. To improve the wear resistance, corrosion resistance and heat resistance, in this study, the plungers of high-speed and ultra-high pressure reciprocating hydraulic pumps for oil and water used in ironwork are produced with $420J_2$ and the coating layers of plungers are formed by the powders of WC-Co-Cr and WC-Cr-Ni including the high hardness WC. The surface of these plungers is modified by the super-mirror face grinding machine using variable air pressure developed in this laboratory, and then the characteristics of cross-sectional microstructure, and surface roughness and hardness values between no operation and 100 days-operation are examined and made a comparison. The fine tops and bottoms on surface roughness curve of oil-hydraulic pump plunger sprayed by WC-Cr-Ni are molded more and higher than those of water-hydraulic pump sprayed by WC-Co-Cr because the plunger diameter of oil-hydraulic pump is 0.4 times smaller than that of water-hydraulic pump and the pressure of oil-hydraulic pump exerted on the plunger is operated with the 70 bars higher than that of water-hydraulic pump. As a result, it is found that the values of centerline average surface roughness and maximum height for oil-hydraulic pump plunger are bigger than those of water-hydraulic pump plunger.

Development of Atomization Spraying System for Solvent-free Paints(II) - Structural Analysis of Hydraulic Actuator - (무용제 도료용 무화 분사시스템 개발(II) - 유압 엑츄에이터의 구조해석 -)

  • Kim, Dong-Keon;Kim, Bong-Hwan;Shin, Sun-Bin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.67-72
    • /
    • 2011
  • Solvent-free paint is sprayed from higher-pressure conditions, because the viscosity is large. The hydraulic actuator which can be operated under higher-pressure condition is required to spray solvent-free paints in painting process for the environmental protection. The purpose of this paper is to develop the hydraulic actuator under higher-pressure conditions for solvent-free paint spraying system. The hydraulic actuator consists of inner spool, outer spool and ball. The analysis of a structural stability was conducted by using ANSYS V11 under the design condition of upward and downward movement of spool. As a result, the maximum von-Mises stress applied on spool under 4mm displacement showed a value of 106MPa which was greater than the allowable stress of the spool with a value of 250MPa and a value of safety factor 3. This result suggested that the spool system be unstable under the design condition so that it was necessary for the spool system to be reinforced to secure the structural stability.

Studies on the Rubber House for the Use of a Power Sprayer (동력분무기용 고무호오스에 관한 연구)

  • 고학균
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.14 no.3
    • /
    • pp.2697-2702
    • /
    • 1972
  • Controlling insects and diseases is an important factor for increasing yields of agricultural products. Power sprayer is widely used in cooperative controlling of insects and diseases for the production of rice and fruits. However, farmers need a long hose to use the power sprayer and that presently most of the farmers have hose made abroad. This study was designed to test the change of outside diameter and unit Iength, and to measure the pressure Ioss for three different kinds of hoses made domestically and one made in Japan. The resulte are as follows; 1. The three kinds of Korean-made hoses showed an increase in the length and a decrease in the outside diameter as the spraying pressure increase. The rate of change of the length ranged from 3.5% to 1.6% and the rate of change of the outside diameter from 3.5% to 1.4% respectively. 2. As the length of hose increases, the pressure loss was $3kg/cm^2$ at the end of a 100m of the hose made in Japan, while it was $7-10kg/cm^2$ for Korean-made hoses. 3. The Korean-made hoses were not broken under $27-28kg/cm^2$ of spraying pressure. 4. As a conclusion, the Korean-made hoses can safely be used under continuous rated pressure of the power sprayer, but they can not properly be used for the case of cooperative controlling system where a long hose is reguired because of the heaviness of the hoses and the narrowness of the inside diametar. Hence, it is highly recommended to improve the Korean-made hoses to be used for such a situation.

  • PDF

A Study on the Wide Reach Nozzle of Sprayer(I) (휴반용 분무기의 Nozzle에 관한 연구(I))

  • 원장우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.2
    • /
    • pp.2980-3001
    • /
    • 1973
  • Nozzle is a part of sprayer and is consists of several elements; swirl plate, vortexchamber, cap and body. The travelling distance of sprayed particles is important in the wide reach nozzle. The factors to influence the travelling distance of the sprayed particles may be the helical angle of swirl plate, the distance of vortex hamber, the slope and the size of cap hole. The study was conducted to examine the effects of these factors on the travelling distance. The results of this study are summarized as follows; 1) There was higher positive correlation(+0.96) between the maximum travelling distance for which amount of sprayed particles was 5cc/cm min. and centro-position of the travelling distance. 2) There was a higher positive correlation(+0.85) between total discharge of sprayed particles and the centro-position of the travelling distance. 3) Main effects and interaction effects of helical angle, pressure, vortex chamber distance and cap slope were significantly affected the travelling distance of sprayed particles. 4) Main effects of helical angle, pressure and cap slope were especially highly significant to influence the travelling disance. 5) Helical angle, pressure, vortex chamber distance and cap slope influenced spraying forward velocity of dise hole, among which cap slope and pressure of nozzle was the most important factors. 6) Effect of change of helical angle on the travelling distance of sprayed particles, was generally a quadratic, the least value of the distance being showed about $45^{\circ}$ and the largest at about $15^{\circ}\;and\;55^{\circ}$, the decreasing rate of the change between $15^{\circ};and\;25^{\circ}$ was very small. 7) Effect of change of pressure on the travelling distance sprayed particles was generally a linear, the increasing rate of the charge was about 1.68, which was the most effective compared to the change of the other factors. 8) Effect of change of vortex chamber distance on the spraying distance was also generally a linear, the increasing rate being about 0.16, which was the least effective. 9) Effect of change of cap slope on the travelling distance was also generally a linear, the increasing rate was about 0.61 and its effect was about medium.

  • PDF