• 제목/요약/키워드: spray pattern

검색결과 215건 처리시간 0.021초

분사압력 변화에 따른 가솔린 직접분사 인젝터의 거시적 분무와 분무패턴 특성에 관한 연구 (Study on Macroscopic Spray and Spray Pattern Characteristics of Gasoline Direct Injection Injector for the Variation of Injection Pressure)

  • 박정현;박수한
    • 한국분무공학회지
    • /
    • 제23권1호
    • /
    • pp.22-29
    • /
    • 2018
  • The purpose of this study is to investigate the macroscopic spray characteristics and spray pattern of a gasoline direct injection (GDI) injector according to the increase of injection pressure. The macroscopic spray characteristics, such as a spray tip penetration and spray angle, were measured and analyzed from the frozen spray images, which are obtained from the spray visualization system including the high-speed camera, light-source, long-distance microscope (LDM). The spray pattern was analyzed through the deviation of the center of the spray plum and images were acquired using Nd: YAG Laser and ICCD(Intensified charge coupled device) camera. From the experiment and analysis, it revealed that the injection pressure have a significant influence on the spray tip penetration and spray pattern. However, the injection pressure have little influence on the spray angle. The increase of injection pressure induced the reduction of a closing delay. In addition, the deviation of spray center increase with the increase of injection pressure and the distance from a nozzle tip.

에어리스 스프레이 도장용 노즐 팁 설계에 관한 연구 (A Study on Design of Nozzle Tip for Airless Spray Coating)

  • 김동건;김순경
    • 한국기계가공학회지
    • /
    • 제11권6호
    • /
    • pp.183-188
    • /
    • 2012
  • This study was carried out to design the spray nozzle tip for airless spray coating. Airless spray coating is the process of coating an object with a liquid spray of paint or other fluid. The nozzle tip controls the fluid flow rate and creates back pressure in the system. The nozzle tip also defines the spray pattern by the size and shape of the orifice. The spray pattern of nozzle tip was investigated numerically using ANSYS CFX ver. 14.0. It was observed that performance result of designed nozzle tip was correspond well, compared with that of GARCO nozzle tip.

두 개의 셔터 구멍이 적용된 원심식 비료 살포기의 살포패턴 분석 (Spray Pattern Analysis for a Centrifugal Fertilizer Distributor with Two Shutter Holes)

  • 황석준;박정현;이주연;김기덕;신범수;남주석
    • 한국기계가공학회지
    • /
    • 제18권10호
    • /
    • pp.8-19
    • /
    • 2019
  • In this study, the spray pattern of a centrifugal fertilizer distributor with two shutter holes was analyzed and an effective driving width that satisfies proper spray uniformity was derived. The centrifugal fertilizer distributor was mounted on a tractor with a rated power of 23.7 kW and static and dynamic spray pattern tests were performed according to the standard procedure proposed by the American Society of Agricultural and Biological Engineers Standard ASAE S341.5. The height of the fertilizer distributor was 80 cm from the ground and the PTO (power take-off) shaft speed of the tractor was fixed at 540 rpm. The fertilizer scattered in space was collected using 275 evenly spaced collectors at shutter opening ratios of 25%, 50%, 75%, and 100%. The spray pattern was analyzed via the amount of sprayed fertilizer at each collector location and the coefficient of variation was used as an indicator of spray uniformity. Using the analyzed spray pattern, the effective driving width that satisfied less than 15% of the coefficient of variation was derived for different tractor driving patterns (race track mode, back and forth mode). From the results, spray uniformity increased as the shutter opening ratio decreased. The largest effective driving width was 8 m at a shutter opening ratio of 25% for both driving patterns.

분무패턴 분석을 이용한 가솔린 직접 분사식 인젝터의 개별 분무플럼 분무각 측정 방법에 대한 연구 (A Study on the Measurement of Individual Spray Cone Angle from Gasoline Direct Injection Injector using Spray Pattern Analysis)

  • 박정현;조한빈;박수한
    • 한국분무공학회지
    • /
    • 제25권2호
    • /
    • pp.51-59
    • /
    • 2020
  • The purpose of this study is to propose and compare methods for measuring individual spray cone angles using spray cross-section images. In direct injection gasoline engines, it was believed that the distribution of air-fuel mixture in the combustion chamber directly affected combustion performance and emission formation. However, since gasoline direct injection (GDI) injectors have a small injection angle, interference between individual spray plumes occurs. Therefore, GDI injectors have only measured the spray angle of the entire spray. To overcome these limitations, three methods of indirectly measuring the spray cone angles of individual spray plume were presented and compared by forming sheet beams using Nd:YAG laser and acquiring spray cross-section images. Each method currently has advantages and disadvantages, and research to apply the method suitable for various GDI injectors needs to be continued.

Dense Spray Patternation using Optical Tomography

  • Cho, Seongho;Park, Gujeong;Yoon, Youngbin
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권4호
    • /
    • pp.398-407
    • /
    • 2013
  • Optical tomography was used to measure the pattern of spray cross-section. The maximum-likelihood estimation (MLE) algorithm was used to reconstruct the spray cross-section from the measured transmission rate of the spray. A swirl-type injector was used to form an optically dense spray, and the test was carried out in a high-pressure chamber, to control the pressure condition of the test site. Before the experiment, the reliability of the MLE-based reconstruction algorithm was verified, by comparing it with a conventional filtered back projection reconstruction (FBP) method. The MLE algorithm showed superior reconstruction of the image. In the spray patternation experiment, the results of the optical tomography and optical line patternator, which uses Mie scattering signal information, were compared. While measuring the cross-section of optically dense spray, the intensity of the scattering signal had attenuated to an uncorrectable level, which led to incorrect spray pattern measurement by the optical line patternator. However, reliable results were obtained by optical tomography, under the same condition. Finally, the pattern of the optically dense spray was measured at various chamber pressures, of up to 3 MPa. As the chamber pressure increased, the hollow cone-shaped swirl spray shrank, and the attenuation coefficient value of the inner region increased.

에폭시 프라이머 도료의 에어리스 스프레이 분사 시간에 따른 팁 노즐 침식마모경향과 분사특성 연구 (A study on the erosive wear of spray tip nozzle by epoxy primer paint impingement and the spraying characteristics)

  • 김진억;조연호;천제일;한명수
    • Corrosion Science and Technology
    • /
    • 제14권2호
    • /
    • pp.59-63
    • /
    • 2015
  • Airless spray which is widely used for painting to ship blocks and hull sides is the coating method for attaching atomized paint material to the substrate using spray tip nozzle with compressed air. When the paint material which has high solid contents such as epoxy primer paint is atomized by passing through spray tip nozzle with high pressure, the nozzle composed of tungsten carbide(WC) undergoes the erosive wear, leading to widening of nozzle hole. The deformation of nozzle hole induces improper spray pattern and coating failures such as finger pattern and sagging because the conditions of spray pump pressure and paint flow rate for developing full spray pattern are changed. In this study, an appropriate replacement cycle of spray tip was predicted by measuring the erosive wear tendency as increasing the spraying time of epoxy primer paint.

노즐 홀 직경에 따른 단공 GDI 인젝터의 분무 특성 연구 - (2) 분무 균일도 및 미립화 특성 비교 (Study on Spray Characteristics of Single-Hole GDI Injector according to Nozzle Hole Diameter - (2) Comparison of Spray Uniformity and Atomization Characteristics)

  • 박정현;노승천;상몽소;박수한
    • 한국분무공학회지
    • /
    • 제25권4호
    • /
    • pp.154-161
    • /
    • 2020
  • A single spray plume is the basic unit of the entire spray plume and is an important factor in understanding the spray characteristics. However, since the multi-hole GDI injector has a narrow spray angle, the superposition of the spray plumes occurs severely. Therefore, the spray uniformity and the spray atomization characteristics of a single spray plume were analyzed in this study using a single-hole GDI injector. Five single-hole GDI injectors with different nozzle hole diameters were used in the experiment. The uniformity of the spray was evaluated through the analysis of the spray pattern images. In addition, the atomization characteristics were compared using the diameter distribution of the spray droplets obtained using PDPA. As a result, the larger diameter of the nozzle hole, the less uniformity of the spray, and the injection pressure did not have a significant effect on the spray uniformity. It is judged that the surface roughness of the injector has a greater effect on spray uniformity than the diameter of the nozzle hole. Also, the size of the spray droplets increased sharply when the diameter of the nozzle hole was 230 ㎛.

충돌제트로 생성되는 분무의 특성에 관한 연구 (A Study on the Characteristics of the Spray Produced by Two Impinging Jets)

  • 강보선
    • 한국분무공학회지
    • /
    • 제2권4호
    • /
    • pp.22-28
    • /
    • 1997
  • In this paper an experimental study of a spray created by two impinging jets is presented utilizing a novel two-reference-beam double-pulse holographic technique. Visualization of the overall spray pattern as well as measurements on the size and velocity of the droplets were performed with the special emphasis on the effect of physical properties of liquids. The overall spray pattern clearly revealed the inherent wave nature In the disintegration process of this type of atomization. The structure of liquid elements near the impingement point is indicative of the mechanisms of the disintegration process. Surface tension plays an important role in the droplet size without any noticeable effect on the spray pattern, whereas viscosity affects the structure without any significant effect on the droplet sire. The droplet velocities were not affected by liquid properties.

  • PDF

VCO노즐에서 고압으로 분사되는 디젤분무의 특성 (Diesel Spray Developement from VCO nozzles for High Pressure Direct-Injection)

  • 강진석;배충식
    • 한국자동차공학회논문집
    • /
    • 제8권3호
    • /
    • pp.28-36
    • /
    • 2000
  • Spray characteristics of diesel fuel injection is one of the most important factors in diesel combustion and pollutant emissions especially in HSDI (High Speed Direct Injection) diesel engines where the interval between the onset of combustion and the evaporation of atomized fuel is relatively short, An investigation into various spray characteristics from different holes of VCO(Valve Covered Orifice) nozzles was performed and its results were compared to standard sac nozzle. The global characteristics of spray, including spray angle, spray tip penetration, and spray pattern were measured from the spray images which were frozen by an instantaneous photography with a spark light source. For better understanding of spray behavior, SMD of the fuel sprays from multi hole nozzles were measured with back light imaging while the sprays from the other holes are covered by a purpose-built nozzle cap. The investigation manifestly reveals the different spray patterns at the beginning of injection produced by VCO nozzles can be identified as three distinct types with their own macroscopic and microscopic characteristics, while macroscopic non-uniformity disappears at 0.9∼1.0ms from the start of injection.

  • PDF