• Title/Summary/Keyword: spray oils

Search Result 25, Processing Time 0.02 seconds

Suppression of melon powdery mildew and tomato leaf mold disease by the antifungal activity of tea tree (Melaleuca alternifolia) essential oil

  • Lee, Mun Haeng;Oh, Sang-Keun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.1071-1081
    • /
    • 2020
  • Essential oils (EOs) have been shown to be plant-extracted antimicrobial agents. However, there are limited studies investigating the efficacy of EOs against pathogens. Among them, tea tree oil (TTO) is extracted from Melaleuca alternifolia, which is also used as an antifungal agent. In this study, the effect of TTO was investigated on the suppression of melon powdery mildew caused by Podosphaera xanthii and tomato leaf mold disease caused by Passalora fulva. Both powdery mildew and leaf mold diseases were significantly suppressed by a spray of TTO. Eighty percent of powdery mildew and 81% of leaf mold disease of the control value were suppressed by 0.5% TTO liquid, when sprayed 3 times every 7 days on the melon and tomato leaves. Inhibition of mycelial growth was also greatly affected by different concentrations of TTO against four different fungal pathogens. Ninety-eight percent of Pseudocercospora fuligena, 97% of P. fulva, 95% of Botrytis cinerea, and 94% of Phytophthora infestans mycelial growth were inhibited by 0.2% to 1.0% of TTO contained in plate media, respectively. However, phytotoxicity in plants by the TTO treatments was revealed when melon and tomato leaves were sprayed with a 1% and 2% concentration of TTO, respectively. Therefore, our findings show that TTO has high antifungal effects against various plant pathogens that occur during crop cultivation. We also suggest that when applying TTO to plant leaves, it is necessary to establish an accurate treatment concentration for different crops.

Environment Friendly Control of Gray Mold, a Ginseng Storage Disease Using Essential Oils (정유를 이용한 환경친화적 수삼 저장병 방제)

  • Kim, Jung-Bae;Kim, Nam-Kyu;Lim, Jin-Ha;Kim, Sun-Ick;Kim, Hyun-Ho;Song, Jeong-Young;Kim, Hong-Gi
    • Research in Plant Disease
    • /
    • v.15 no.3
    • /
    • pp.236-241
    • /
    • 2009
  • The objective of this study was to find an environment friendly method of ginseng storage disease control using a natural plant extract. Essential oil was evaluated in terms of its antifungal ability against a variety of ginseng storage pathogens, and a variety of essential oils was conducted in order to assess the possibility of applying them as a component of a disease control strategy. Direct treatment with essential oil was demonstrated to exert a ginseng storage control effect. Methyl eugenol and thymol were shown to exert a mycelial growth inhibition effect of 80% on PDA media, using a paper disc containing 200 ppm of essential oil against Botrytis cinerea. The application of direct methyl eugenol treatment to ginseng resulted in a profound control effect. Both spray and dipping treatment of each methyl eugenol as well as thymol, evidenced a disease develoment of 10-20% as compared with the over 80% observed from all non-treated packages. Methyl eugenol in the large packages resulted in a disease index of 0.60 in the two essential oil treatments and also a small diseased area, as compared with the disease index of 1.65 and the wide diseased area observed in the non-treatment groups. Treatment with a mixture (methyl eugenol + thymol) in the synergistic effect test resulted in a relatively wide diseased area, as no discernable synergistic effect was detected. Methyl eugenol and thymol can be utilized as control agents in an environmentally friendly ginseng storage treatment, owing to the avirulent and clear effects detected in this study. In particular, ginseng must be ingested when fresh, and this is why a product for the control of ginseng storage diseases is so necessary.

An Experimental Study on the Automobile Engine Room Fire Using the Extinguishing Agents (소화약제를 이용한 자동차 엔진룸 화재 실험에 관한 연구)

  • Han, Yong-Taek;Kim, Dong-Ho;Kwon, Sung-Pil
    • Fire Science and Engineering
    • /
    • v.28 no.4
    • /
    • pp.1-7
    • /
    • 2014
  • Several complex devices and equipments are installed in the car's engine room, including various kind of oils or other flammable materials. So re-ignition is very likely to take place in it. In addition, it is restrictive for the driver or the occupant to open the bonnet and to spray the fire extinguisher in the engine room due to the high possibility of explosion. Therefore, a fire extinguishing system, which can detect a fire and inject the fire extinguishing agent to extinguish it, and fire extinguishing agents including HFC-227ea, which can stand the high temperature within the engine room and hold the viscosity sufficient to keep it in the kind of foam, were developed and tested. And the suffocation effect and the cooling effect come from the fire extinguishing principle of the foam fire extinguishing agent and the inhibiter catalyst effect come from the one of HFC-227ea was led simultaneously, and fire extinguishing agents without the secondary damage caused by residuals after the fire extinguishment like a case of the powder fire extinguishing agent, were developed. And experiments using a vehicle collision after the discharge is complete, foreign material can be removed without extinguishing the advantage that experimental results obtained.

Studies on the Rooting Ability of Cutting in Elder Berry(Sambucus canadiensis) (황금(黃金)포도나무(Elder berry)의 삽목시험(揷木試驗))

  • Park, Kyo Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.40 no.1
    • /
    • pp.43-50
    • /
    • 1978
  • The elder berry was known to the rich in natural food colour resources and used in as for making wine, confectionary, perfumes, natural food colour, making elder berry juice, jelly, jam and medicinal properties or oils. In the present study, wish was to find the effect of various factors on the success of the vegetative propagation of elder berry by means cutting in the exposed field and green house was carried out and those obtained results can be summarized as follows. 1. Cuttings with dormant cutting stocs in the polyethylen house with heating and water mist spray resulting 100 percent survival. And temperature and the relative humidity in which fraim during the cutting season were around $20{\sim}25^{\circ}C$ and 70-90% respectively and in case as more significant other of the 1% Level. 2. With five varieties tested, resulting 93.8 percent survival, The F. value is not significant. 3. With four organs of cutting stock tested resulting 57.5 percent survival on the cuttings with two knodes of dormant cutting stock served as better cutting stock than others. The F. value is more significantly 1% Level. 4. Dormand bud served as possible cutting stock was found to be 17.66 survival percentage. 5. Both earlier and later stage of germinated Leaves with soft wood cutting stock poor cuttings, and the degree of development of 15th June cutting stock was optimum stage on the principal factor governing the success of cutting in the soft wood cutting showing 54% survival. The F. value is more 1% Level significant.

  • PDF

Development of Solid Self-nanoemulsifying Drug Delivery Systems of Ticagrelor Using Porous Carriers (다공성의 캐리어를 이용한 티카그렐러 함유 고형의 자가 나노유화 약물전달시스템 개발)

  • Choi, Hyung Joo;Kim, Kyeong Soo
    • Journal of Life Science
    • /
    • v.31 no.5
    • /
    • pp.502-510
    • /
    • 2021
  • The objective of this study was to develop a novel ticagrelor-loaded self-nanoemulsifying drug delivery system with an enhanced solubility and dissolution rate. Numerous oils and surfactants were screened, then medium chain triglyceride (MCT) oil and the surfactants polyoxyethylene sorbitan monooleate (Tween 80) and Labrafil M1944CS were selected for the preparation of the ticagrelor-loaded self-nanoemulsifying drug delivery system. A pseudo-ternary phase diagram was constructed to detect the nanoemulsion region. Of the various formulations tested, the liquid SNEDDS, composed of MCT (oil), Tween 80 (surfactant), and Labrafil M1944CS (cosurfactant) at a weight ratio of 20/70/10 produced the smallest emulsion droplet size (around 20.56±0.70 nm). Then, particle size, polydispersity, and zeta potential were measured using drugs containing liquid SNEDDS. The selected ticagrelor-loaded liquid SNEDDS was spray-dried to convert it into a ticagrelor-loaded solid SNEDDS with a suitable inert carrier, such as silicon dioxide, calcium silicate, or magnesium aluminometasilicate. The solid SNEDDS was characterized by scanning electron microscopy, transmission electron microscopy, and in vitro dissolution studies. SEM, PXRD, and DSC results suggested that amorphous ticagrelor was present in the solid SNEDDS. Also, the solid SNEDDS significantly increased the dissolution rate of ticagrelor. In particular, the emulsion particle size and the polydispersity index of the solid SNEDDS using silicon dioxide (SS1) as a carrier was the smallest among the evaluated solid SNEDDS, and the flowability and compressibility result of the SS1 was the most suitable for the manufacturing of solid dosage forms. Therefore, solid SNEDDS using silicon dioxide (SS1) could be a potential nano-sized drug delivery system for the poorly water-soluble drug ticagrelor.