• Title/Summary/Keyword: spray distribution

Search Result 587, Processing Time 0.02 seconds

A Study on the Fluid Mixing Analysis for Proving Shell Wall Thinning of a Feedwater Heater (급수가열기 동체 감육 현상 규명을 위한 유동해석 연구)

  • Kim, Kyung-Hoon;Hwang, Kyeong-Mo;Kim, Sang-Nyung
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.24-30
    • /
    • 2004
  • Feedwater flowing tube side of number 5 high pressure feedwatrr heaters was heated by extracting steam from high pressure turbine and draining water from moisture separators and number 6 high pressure feedwater heaters and supplied into steam generators. Because the extracting steam from the high pressure turbine is two phase fluid of high temperature, high pressure, and high speed and flows to inverse direction after impinging to impingement baffle. the shell wall of the number 5 high pressure feedwater heater may be affected by flow accelerated corrosion. On May 14, 1999, Point Beach Nuclear Plant (PBNP) with operating at full power experienced a steam leak from rupture of shell side of number 4B feedwater heater. Also, d domestic nuclear power plant experienced a severe wall thinning of shell side of number 5A and 5B feedwater heaters. This paper describes the fluid mixing analysis study using PHOENICS code in order to get at the root of the shell wall thinning of the feedwater heaters. The sections included in the fluid mixing analysis model are around the number 5h feedwater heater shell including the extracting pipeline. To identify the relation between the local velocities and wall thinning. the local velocities according to the analysis results were compared with the distribution of the shell wall thickness by ultrasonic test.

  • PDF

Reynolds Stress Distribution on Boundary Layer Flow Conditions in the Near-Wake of a Flat Plate (평판 근접 후류에서 경계층의 유동조건에 따른 레이놀즈 응력분포)

  • Kim, Dong-Ha;Chang, Jo-Won
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.53-66
    • /
    • 2004
  • An experimental study was carried out in order to investigate the influence of flow conditions on a boundary layer in the near-wake of a flat plate. The flow conditions in the vicinity of the trailing edge that is influenced by upstream condition history are an essential factor that determines the physical characteristics of a near-wake. Tripping wires attached at various positions were selected to change flow conditions of a boundary layer. The flows such as laminar, transitional, and turbulent boundary layer at 0.98C from the leading edge are imposed in order to investigate the evolution of symmetric and asymmetric wake. An x-type hot-wire probe(55P61) is employed to measure at 8 stations in the near-wake. Test results show that the near-wake for the case of a turbulent boundary layer is relatively insensitive to instability after separating at the trailing edge, and Reynolds shear stress in the near-wake for the case of a turbulent boundary layer collapses due to turbulent kinetic energy.

  • PDF

Computational Study on the Soot Blowing Method for Enhancing the Performance of the SCR System (SCR 시스템의 효율적인 운영을 위한 Soot Blowing 방법에 대한 해석적 연구)

  • Seo, MoonHyeok;Chang, HyukSang
    • Particle and aerosol research
    • /
    • v.8 no.3
    • /
    • pp.99-110
    • /
    • 2012
  • In the SCR (selective catalytic reduction) system which is used for controlling the NOx emission from the Diesel engines, the soot deposited on the catalysis causes degradation of the system performance. Numerical study was done to evaluate the performance of soot blower which is proposed as a method for removing the soot on the catalysis. The spray conditions and the effect of the compressed air from the AIG (air inlet gun) were analyzed numerically to evaluate the overall effective method of the soot blowing. The characteristics of the final velocity distribution and velocity waves across the inlet section of the catalysis were evaluated with respect to the geometries of the AIG outlets and pressure conditions. An experimental model was used to validate the results of the numerical calculation that is used for finding the effective removal blowing momentum transfer quantities of soot the inlet section of the catalysis, and it is proposed that the required minimum blowing momentum transfer quantities are over than 0.499 $kg/m{\bullet}t_{eff}$ in the current study.

Process Development for the Enzymatic Hydrolysis of Food Protein: Effects of Pre-treatment and Post-treatments on Degree of Hydrolysis and Other Product Characteristics

  • Chae, Hee-Jeong;In, Man-Jin;Kim, Min-Hong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.1
    • /
    • pp.35-39
    • /
    • 1998
  • An enzymatic process was developed to produce protein hydrolysater form defatted soya protein. Various unit operations were tried, and the effects of pre- and post-treatments on the product characteristics such as degree of hydroylsis (DH), free amino acid content (%FAA) and average molecular weight (MW) were investigated. The use of acid washes showed no difference in %DH. Increasing pH during pre-cooking gave lower %DH. Alkaline cooking made too much insoluble protein, thus the protein yield was too small. A better hydrolysis with more acceptable taste was obtained when the combination of Neutrase/Alcalase/Flavourzyme was used in place of Alcalase/Flavourzyme combination; Untoasted defatted soya was more effective on the proteolysis than toasted one. The MW of the evaporated and spray dried product was higher than that of undried product, due to precipitation of low-solubility components. When ultrafiltration and the product concentration carried out the product separation by reverse osmosis, the solubility and the taste of the product were improved. The difference between enzyme hydrolysate and acid hydrolysate was significant in free amino acid composition, especially in tyrosine, phenylalanine, glutamine and asparagine.

  • PDF

A Study on the Atomization Characteristics of the Ultrasonic-Energy-Irradiation High Viscosity Biodiesel Blended Fuel (초음파 에너지 조사 고 점도 바이오디젤 혼합연료의 미립화 특성에 관한 연구)

  • Song Yong-Seek;Yang In-Kwon;Kim Bong-Seock;Ryu Jung-In
    • Journal of Energy Engineering
    • /
    • v.13 no.4
    • /
    • pp.235-241
    • /
    • 2004
  • This experiment was undertaken to investigate the atomization characteristics of the high viscosity biodiesel blended fuel and ultrasonic energy irradiation one. Test fuels were conventional diesel fuel and biodiesel one. We compared to the characteristics of viscosity and surface tension, SMD between high viscosity biodiesel blended fuel and ultrasonic energy irradiation one. Sauter mean diameter was measured under the variation of the spray distance. Viscosity and surface tension were measured under the variation of the time trace. To measure the droplet size, we used the Malvern system 2600c. Droplet size distribution was analyzed from the result data of Malvern system. Through this experiment, we found that the condition of the ultrasonic energy irradiation situation had smaller Sauter mean diameter of droplet, viscosity and surface tension than those of the conventional situation.

Changest in Electric Potentials of Leaf Surface Induced by Environmental Stimuli (환경자극에 따른 식물의 엽표면 전위포텐셜의 변화)

  • 손기철;류명화;길미정
    • Journal of Bio-Environment Control
    • /
    • v.9 no.2
    • /
    • pp.94-100
    • /
    • 2000
  • This study was conducted to investigate the changes of electric potentials of leaf surface induced by environmental stimuli in plant. The values of electric potentials varied with different intervals of light on and off, and light qualities and moreover, their changes were also varied according to the time of a day. Additionally, stimuli such as candle light, wind, or 5$^{\circ}C$ cool water spray also evoked considerable changes in leaf surface electric potentials and their signal patterns varied with species of plants tested. In frequency analysis of electric potentials, the distribution values by FFT were highest in 1-10 Hz frequency zone by the majority of stimuli. These results suggested that changes in leaf surface electric potentials depended upon plant species even though stimulus was the same and vice versa.

  • PDF

Investigating coating material and conditions for rehabilitation of water transmission pipe using a robotic system (자동화 장비를 이용한 대형 상수관로 갱생을 위한 코팅재료 선정 및 방법에 관한 연구)

  • kim, Jinwon;Kim, Donghyun;Lee, Younggun;Lee, Sewan;Kim, Dooil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.6
    • /
    • pp.725-736
    • /
    • 2016
  • There is a growing concern on the improvement of water distribution pipeline for multi-regional water supply system in Korea along with its aging infrastructure. Rehabilitation of large diameter pipeline is more efficient in cost and time compared to replacement with trenching. The procedure for rehabilitation are diagnosis, cleaning, spraying coating material, and final inspection. The internal state of pipeline was carefully diagnosed and got C grade, which required rehabilitation. We found that 17,274,787,000 Korean won could be saved after pipe surface coating because of increased C coefficient of Hazen-Williams equation. Optimal coating material was D polyurea. We also found optimal distance between spraying nozzle and pipe wall to be 70 - 80 cm, which were critical factors for coating quality. This study also illustrated the time for spray drying to be more than 30 min. These results could be used in the quality control process during rehabilitation of aged pipelines.

A Cooling Method which Reduces the Tangential Tensile Stresses on a Work Roll Surface during Hot Slab Rolling (열연 슬라브 압연에서 워크롤 표면 원주방향 인장응력 감소를 위한 냉각 방법)

  • Na, D.H.;Lee, Y.
    • Transactions of Materials Processing
    • /
    • v.21 no.1
    • /
    • pp.58-66
    • /
    • 2012
  • The work roll surface temperature rises and falls repetitively during hot slab rolling because the work roll surface is cooled continuously by water. This study focused on Std. No. 7 to determine a cooling method which significantly reduces the tangential tensile stresses on the work roll surface of the hot slab mill at Hyundai Steel Co. in Korea. A series of finite element analyses were performed to compute the temperature distribution and the tensile stresses in the circumferential direction of the work roll. The virtual slab model was used to reduce the run time considerably by assigning a high temperature to the virtual slab. Except for the heat generated by plastic deformation, this is equivalent to the hot rolling condition that a high temperature slab (material) would experience when in contact with the work rolls. Results showed that when the virtual slab model was coupled with FE analysis, the run time was found to be reduced from 2000 hours to 70 hours. When the work roll surface cooled with a certain on-off patter of water spray, the magnitude of the tangential stresses on the work rolls were decreased by 54.1%, in comparison with those cooled by continuous water spraying. Savings of up to 83.3% in water usage are possible if the proposed water cooling method is adopted.

Integral effect test for steam line break with coupling reactor coolant system and containment using ATLAS-CUBE facility

  • Bae, Byoung-Uhn;Lee, Jae Bong;Park, Yu-Sun;Kim, Jongrok;Kang, Kyoung-Ho
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2477-2487
    • /
    • 2021
  • To improve safety analysis technology for a nuclear reactor containment considering an interaction between a reactor coolant system (RCS) and containment, this study aims at an experimental investigation on the integrated simulation of the RCS and containment, with an integral effect test facility, ATLAS-CUBE. For a realistic simulation of a pressure and temperature (P/T) transient, the containment simulation vessel was designed to preserve a volumetric scale equivalently to the RCS volume scale of ATLAS. Three test cases for a steam line break (SLB) transient were conducted with variation of the initial condition of the passive heat sink or the steam flow direction. The test results indicated a stratified behavior of the steam-gas mixture in the containment following a high-temperature steam injection in prior to the spray injection. The test case with a reduced heat transfer on the passive heat sink showed a faster increase of the P/T inside the containment. The effect of the steam flow direction was also investigated with respect to a multi-dimensional distribution of the local heat transfer on the passive heat sink. The integral effect test data obtained in this study will contribute to validating the evaluation methodology for mass and energy (M/E) and P/T transient of the containment.

A Study on the MSATs (Mobile source Air Toxics) Contribution from MDTs (Medium-duty Trucks) Exhaust Emission (중형트럭에서 발생하는 배출가스 중 미량유해물질 발생 특성 연구)

  • Lim, Yun Sung;Mun, Sun Hee;Lee, Jong Tae;Dong, Jong In
    • Journal of ILASS-Korea
    • /
    • v.24 no.1
    • /
    • pp.21-26
    • /
    • 2019
  • In Korea, Medium-duty trucks are classified into GVW (Gross Vehicle Weight) 3.5~10tons. MDTs are mostly used for logistics or delivery between regions. There have been studied on diesel fuel vehicles for SUVs(Sports Utility Vehicle) or light-duty trucks. But MDTs have been not studied. Therefore, this study have been used MDTs for characteristic exhaust emission. Test was carried out using the certification test mode (NEDC, New European Driving cycle) and the NIER mode in chassis dynamometer of the MDTs. And emission gas was analyzed for PN (Particulate Number), PN size distribution and aldehydes, VOCs (Volatile Organic Compounds), PAHs (Polycyclic Aromatic Hydrocarbons). This paper concluded that EURO-IV trucks produced more MSATs than EURO V trucks. Depending on the engine temperature, more MSATs were generated in cold temperature than in the hot start operation. However, the driving speed, the opposite results was obtained.