• Title/Summary/Keyword: sporulation-specific glucoamylase

Search Result 3, Processing Time 0.019 seconds

Characterization of Sporulation-Specific Glucoamylase of Saccharomyces diastaticus (Saccharomyces diastaticus의 포자형성 특이 글루코아밀라제의 특성)

  • Kim, Eun-Ju;Ahn, Jong-Seog;Kang, Dae-Ook
    • Journal of Life Science
    • /
    • v.20 no.5
    • /
    • pp.683-690
    • /
    • 2010
  • The yeast strains of Saccharomyces diastaticus produce one of three isozymes of an extracellular glucoamylase I, II or III, a type of exo-enzyme which can hydrolyse starch to generate glucose molecules from non-reducing ends. These enzymes are encoded by the STA1, STA2 and STA3 genes. Another gene, sporulation-specific glucoamylase (SGA), also exists in the genus Saccharomyces which is very homologous to the STA genes. The SGA has been known to be produced in the cytosol during sporulation. However, we hypothesized that the SGA is capable of being secreted to the extracellular region because of about 20 hydrophobic amino acid residues at the N-terminus which can function as a signal peptide. We expressed the cloned SGA gene in S. diastaticus YIY345. In order to compare the biochemical properties of the extracellular glucoamylase and the SGA, the SGA was purified from the culture supernatant through ammonium sulfate precipitation, DEAE-Sephadex A-50, CM-Sephadex C-50 and Sephadex G-200 chromatography. The molecular weight of the intact SGA was estimated to be about 130 kDa by gel filtration chromatography with high performance liquid chromatography (HPLC) column. Sodium dedecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed it was composed of two heterogeneous subunits, 63 kDa and 68 kDa. The deglycosylation of the SGA generated a new 59 kDa band on the SDS-PAGE analysis, indicating that two subunits are glycosylated but the extent of glycosylation is different between them. The optimum pH and temperature of the SGA were 5.5 and $45^{\circ}C$, respectively, whereas those for the extracellular glucoamylase were 5.0 and $50^{\circ}C$. The SGA were more sensitive to heat and SDS than the extracellular glucoamylase.

Molecular Cloning and Analysis of Sporulation-Specific Glucoamylase (SGA) Gene of Saccharomyces diastaticus

  • Kang, Dae-Ook;Hwang, In-Kyu;Oh, Won-Keun;Lee, Hyun-Sun;Ahn, Soon-Cheol;Kim, Bo-Yeon;Mheen, Tae-Ick;Ahn, Jong-Seog
    • Journal of Microbiology
    • /
    • v.37 no.1
    • /
    • pp.35-40
    • /
    • 1999
  • Sporulation-specific glucoamylase (SGA) gene was isolated from genomic library of Saccharomyces diastaticus 5114-9A by using glucoamylase non-producing mutant of S. diastaticus as a recipient. When the glucoamylase activities of culture supernatant, periplasmic, and intracellular fraction of cells transformed with hybrid plasmid containing SGA gene were measured, the highest activity was detected in culture supernatant. SGA produced by transformant and extracellular glucoamylase produced by S. diastaticus 5114-9A differed in enzyme characteristics such as optimum temperature, thermostability, and resistance to SDS and urea. But the characteristics of SGA produced by sporulating yeast cells and vegetatively growing transformants were identical.

  • PDF

The Signal Sequence of Sporulation-Specific Glucoamylase Directs the Secretion of Bacterial Endo-1,4-β-D-Glucanase in Yeast (효모에서 포자형성 특이 글루코아밀라제의 분비서열에 의한 세균 endo-1,4-β-D-glucanase의 분비)

  • Ahn, Soon-Cheol;Kim, Eun-Ju;Chun, Sung-Sik;Cho, Yong-Kweon;Moon, Ja-Young;Kang, Dae-Ook
    • Journal of Life Science
    • /
    • v.22 no.2
    • /
    • pp.142-147
    • /
    • 2012
  • The sporulation-specific glucoamylase (SGA) of Saccharomyces diastaticus is known to be produced in the cytoplasm during sporulation. For the purpose of proving that SGA has secretory potential, we constructed a hybrid plasmid, pYESC25, containing the promoter and the putative signal sequence of the SGA fused in frame to the endo-1,4-${\beta}$-D-glucanase (CMCase) gene of Bacillus subtilis without its own signal sequence. The recipient yeast strain of S. diastaticus YIY345 was transformed with the hybrid plasmid. CMCase secretion from S. diastaticus harboring pYESC25 into culture medium was confirmed by the formation of yellowish halos around transformants after staining with Congo red on a CMC agar plate. The transformant culture was fractionated to the extracellular, periplasmic, and intracellular fraction, followed by the measurement of CMCase activity. About 63% and 13% enzyme activity were detected in the culture supernatant (extracellular fraction) and periplasmic fraction, respectively. Furthermore, ConA-Sepharose chromatography, native gel electrophoresis, and activity staining revealed that CMCase produced in yeast was glycosylated and its molecular weight was larger than that of the unglycosylated form from B. subtilis. Taking these findings together, SGA has the potential of secretion to culture medium, and the putative signal sequence of SGA can efficiently direct bacterial CMCase to the yeast secretion pathway.