• Title/Summary/Keyword: spool commutation mechanism

Search Result 2, Processing Time 0.019 seconds

Development of the Pneumatic Servo Valve

  • Kim, Dong-Soo;Choi, Byung-Oh;Kim, Kwang-Young;Lee, Won-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1146-1151
    • /
    • 2003
  • Pneumatic servo valve is an electro-mechanical device which change electric signals to a proper pneumatic signals, that is, flowrate and pressure. In this study, a pneumatic servo valve was designed and each simulation was conducted on any variation in the flowrate depending upon the magnetic force of the linear force motor and the displacement of the spool. And permanent magnet was used as a material for the plunger of the servo valve. Thereby, a low electrical power consumption type coil was desinged. And a modeling for the coil design was conducted by using the magnetic circuit. also, the feasibility of the modeling was verified by using a commercial magnetic field analysis program. The designed and fabrication of the spool and sleeve, position sensor, servo controller and the dynamic characteristic verified by the experiment.

  • PDF

A Study of Korean (Industrial) Standards for Pneumatic Servo Valve (공압서보밸브 KS규격 정립에 관한 연구)

  • 김동수;이원희;최병오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1231-1234
    • /
    • 2003
  • Pneumatic servo valve which is widely applied in industrial world is advanced technology compounded with electric, electronic and machine. And It is consist of Linear Force Motor. Spool Commutation Mechanism and Microprocessor. In this study, we accomplished test method of Linear Force motor test, Static characteristic test, Dynamic characteristic test for KS(Koran industrial standard) of Pneumatic servo valve. we accomplished study about the main item of Static characteristic test which is related to unload flow characteristic test. And Dynamic characteristic test was step input test and frequency response test. Specially about frequency response test, There was a difficulty resulting from the time delay problem caused by the basic compressibility of air. In order to solve the problem in this study. we proposed two methods. First, displacement of the servo valve spool was directly measured by using a laser sensor. Second, method of calculating control flow by measuring pressure and temperature of chamber.

  • PDF