• 제목/요약/키워드: splitting tensile

검색결과 277건 처리시간 0.026초

후설치 콘크리트 세트앵커의 인발파괴거동에 관한 실험적 연구 (An Experimental Study on the Pullout Failure Behavior of Post-installed Concrete Set Anchor)

  • 숫러타;유승운
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제18권1호
    • /
    • pp.40-47
    • /
    • 2014
  • 최근 토목구조물의 보수 보강 및 리모델링시 구조부재를 부착시키거나 고정하는데 있어서 시공의 유연성 및 용이성으로 후설치 앵커의 사용량이 증가하고 있는 실정이지만 현재 우리나라에서는 설계자와 시공자가 신뢰할 수 있는 명확한 설계기준이 없는 상태로서 외국의 설계기준에 의존하고 있는 실정이다. 무근콘크리트에 매입된 앵커에 인발하중이 작용할 때 앵커의 다양한 파괴모드는 콘크리트 파괴, 쪼갬파괴, 강재파괴, 뽑힘파괴 및 측면파괴가 발생한다. 이것은 강재의 인장 강도, 콘크리트 강도, 매입 깊이, 앵커 간격, 연단거리와 인접 앵커의 존재에 따라 달라진다. 본 연구에서는 매입깊이, 앵커간격 및 연단거리를 변수로 한 후설치 콘크리트 세트앵커의 인발파괴실험을 통하여 무근콘크리트에 매입된 후설치 세트앵커의 인발거동에 미치는 영향을 규명하는 것을 그 목적으로 한다.

Mechanical properties of pervious concrete with recycled aggregate

  • Zhu, Xiangyi;Chen, Xudong;Shen, Nan;Tian, Huaxuan;Fan, Xiangqian;Lu, Jun
    • Computers and Concrete
    • /
    • 제21권6호
    • /
    • pp.623-635
    • /
    • 2018
  • In order to research the influence of different recycled aggregate contents on the mechanical properties of pervious concrete, the experimental study and numerical simulation analysis of the mechanical properties of pervious concrete with five kinds of recycled aggregates contents (0%, 25%, 50%, 75% and 100%) are carried out in this paper. The experimental test were first performed on concrete specimens of different sizes in order to determine the influence of recycled aggregate on the compressive strength and splitting tensile strength, direct tension strength and bending strength. Then, the development of the internal cracks of pervious concrete under different working conditions is studied more intuitively by $PFC^{3D}$. The experimental results show that the concrete compressive strength, tensile strength and bending strength decrease with the increase of the recycled aggregate contents. This trend of reduction is not only related to the brittleness of recycled aggregate concrete, but also to the weak viscosity of recycled aggregate and cement paste. It is found that the fracture surface of pervious concrete with recycled aggregate is smoother than that of natural aggregate pervious concrete by $PFC^{3D}$, which means that the bridging effect is weakened in the stress transfer between the left and right sides of the crack. Through the analysis of the development of the internal cracks, the recycled aggregate concrete generated more cracks than the natural aggregate concrete, which means that the recycled aggregate concrete is easier to form a coalescence fracture surface and eventually break.

Mechanical properties of SFRHSC with metakaolin and ground pumice: Experimental and predictive study

  • Saridemir, Mustafa;Severcan, Metin Hakan;Celikten, Serhat
    • Steel and Composite Structures
    • /
    • 제23권5호
    • /
    • pp.543-555
    • /
    • 2017
  • The mechanical properties of steel fiber reinforced high strength concrete (SFRHSC) made with binary and ternary blends of metakaolin (MK) and ground pumice (GP) are investigated in this study. The investigated properties are ultrasonic pulse velocity ($U_{pv}$), compressive strength ($f_c$), flexural strength ($f_f$) and splitting tensile strength ($f_{st}$) of SFRHSC. A total of 16 steel fiber reinforced concrete mixtures were produced by a total binder content of $500kg/m^3$ for determining the effects of MK and GP on the mechanical properties. The design $f_c$ was acquired from 70 to 100 MPa by using a low water-binder ratio of 0.2. The test results exhibit that high strength concrete can be obtained by replacing the cement with MK and GP. Besides, correlations between these results are executed for comprehending the relationship between mechanical properties of SFRHSC and the strong correlations are observed between these properties. Moreover, two models in the gene expression programming (GEP) for predicting the $f_c$ of SFRHSC made with binary and ternary blends of MK and GP have been developed. The results obtained from these models are compared with the experimental results. These comparisons proved that the results of equations obtained from these models seem to agree with the experimental results.

AE에 의한 WA계 비트리파이드 및 레지노이드 結合劑硏削숫돌의 破壞强度評價 (Evaluation of Fracture Strength of WA-Vitrified and Resinoid Bond Grinding Wheels by Acoustic Emission)

  • 강명순;한응교;권동호
    • 대한기계학회논문집
    • /
    • 제12권2호
    • /
    • pp.241-251
    • /
    • 1988
  • 본 연구에서는 숫돌입자, 결합자 및 기공으로 조성된 연삭숫돌의 구조를 다공질 포성체로 보고, WA계 비트리파이드(vitrified) 및 레지노이드(resinoid) 결합자의 연삭숫돌시험편에 대하여 AE 계측방법을 이용한 인장, 압축, 굽힘 및 압렬시험을 실시하여 Babel과 Sines의 2축응력장해소이론과 연삭숫돌의 파괴조건을 관련시켜 평가함과 동시에, 이 때 검출되는 AE 신호 처리 파라미터(Parameter) 로부터 연삭숫돌의 자인자가 파괴강도 및 AE특성에 미치는 영향을 구명하여 파괴의 예지및 연삭숫돌수명의 예측가능성등의 파괴강도특성을 평가고찰하였다.

섬유보강 콘크리트의 역학적 특성에 대한 섬유 체적비와 길이의 영향 (Effect of Volume Fraction and Length of Fiber on the Mechanical Properties of Fiber Reinforced Concrete)

  • 양근혁;오승진
    • 한국건축시공학회지
    • /
    • 제8권1호
    • /
    • pp.43-48
    • /
    • 2008
  • Fifteen concrete specimens were mixed and tested to explore the significance and limitation of appling the polyvinyl alcohol (PVA) fiber and steel fiber with end hook to concrete. Main parameters investigated were volume fraction and length of the fibers. The measured mechanical properties of fiber reinforced concrete are analyzed according to the equivalent fiber amount index explaining the adding amount and length of fibers. Test results showed that compressive strength of fiber reinforced concrete was higher than that of concrete with no fiber by $10{\sim}20%$. The normalized splitting tensile strength and flexural strength of PVA fiber reinforced concrete were similar to those of concrete with no fiber, whereas those of steel fiber reinforced concrete increased with the increase of the equivalent fiber amount index. In particular, much higher ductile behavior was observed in steel fiber reinforced concrete than in PVA reinforced concrete, indicating that the slope of descending branch of load-displacement relationship of steel fiber reinforced concrete decreased with the increase of the volume fraction and length of the fiber.

탄소섬유/에폭시 복합재료의 층간파괴인성에 미치는 균열진전각도의 영향 (Effect of Crack Propagation Directions on the Interlaminar Fracture Toughness of Carbon/Epoxy Composite Materials)

  • 황진호;황운봉
    • 대한기계학회논문집A
    • /
    • 제23권6호
    • /
    • pp.1026-1038
    • /
    • 1999
  • Interlaminar fracture toughness of carbon/epoxy composite materials has been studied under tensile and flexural loading by the use of width tapered double cantilever beam(WTDCB) and end notched flexure(ENF) specimens. This study has significantly examined the effect of various interfacial ply orientation, ${\alpha}(0^{\circ},\;45^{\circ}\;and\;90^{\circ})$ and crack propagation direction, ${\theta}(0^{\circ},\;15^{\circ},\;30^{\circ}\;and\;45^{\circ})$ in terms of critical strain energy release rate through experiments. Twelve differently layered laminates were investigated. The data reduction for evaluating the fracture energy is based on compliance method and beam theory. Beam theory is used to analyze the effect of crack propagation direction. The geometry and lay-up sequence of specimens are considered various conditions such as skewness parameter, beam volume, and so on. The results show that the fiber bridging occurred due to the non-midplane crack propagation and causes the difference of fracture energy evaluated by both methods. For safer and more reliable composite structures, we obtain the optimal stacking sequence from initial fracture energy in each mode.

Experimental Study of Steel Fiber Concrete Slabs Part I: Behavior under Uniformly Distributed Loads

  • Ellouze, Ali;Ouezdou, Mongi Ben;Karray, Mohammed Ali
    • International Journal of Concrete Structures and Materials
    • /
    • 제4권2호
    • /
    • pp.113-118
    • /
    • 2010
  • This article aims to study the effects of adding steel fibers to concrete on the mechanical behavior of steel fiber concrete (SFC) slabs. After formulating the SFC, an experimental work was, first, conducted on $160\;{\times}\;320$ mm cylindrical specimens and $70\;{\times}\;70\;{\times}\;280$ mm prisms. Then, this study was carried out on 20 rectangular $1,100\;{\times}\;1,100\;{\times}\;60$ mm small slabs submitted to a distributed load. Two types of fibers with hooked ends were used: long fibers (LF) of a length of 50 mm and short fibers (SF) of a length of 35 mm. The studied parameters are compressive and tensile strengths and Young's modulus. Plain concrete (PC) small slabs were also prepared to be compared to the SFC specimens. The results showed that the compressive strength of SFC increased up to 25% while the splitting tests showed an improvement of the SFC reaching 45%. Tests on SFC small slabs also showed that a smaller deflection is obtained with respect to PC, which indicates an improvement in strength (up to 100%), in ductility and in resistance to cracking. The LF gives a better improvement in strength than the SF for a 70% $kg/m^3$ of steel proportioning.

증기 에이징을 실시한 전로슬래그 콘크리트의 특성 (The Properties of Concrete mixed with Steam Aging Converter slag)

  • 곽기주;손순종;서병철;곽동림
    • 한국농공학회지
    • /
    • 제37권5호
    • /
    • pp.43-52
    • /
    • 1995
  • To examine the appicability of the converter slag to aggregate, tests were performed for the converter slag specimens which were aged with steam, and the stability of expansion was investigated. The strength of the converter slag was found to he lower than that of the natural aggregate. But the strength of the concrete mixed with the converter slag and the granular slag was increased with an increase of the content of the granular slag. The slump value was larger for the specimen of the converter slag than that for the natural aggregate. The specific weight of the converter slag was decreased with an increase of the aging peroid. The aging time for the converter slag was accessed to be about 48 hours to accommodate the full stability of the expansion. The amount of the steam needed to age one ton of converter slag to full expansion was accessed to be 60 kg. From the regression analysis for splitting tensile strength (t), and flexural strength (f), the compressive strength (c) based on the following formulas were proposed $\sigma$t=0.1506 $\sigma$c+4.5(kg/cm$^2$) (r=0.876) $\sigma$f=O.l537.~+30.5(kg/cm$^2$) (r=0.796)

  • PDF

초기양생중에 수평연속진동을 받은 콘크리트의 강도특성 (Strength Characteristics of Concrete Subjected In Horizontal Continuous Vibration During Initial Curing)

  • 장희석;김명식;김종수;한중기
    • 콘크리트학회논문집
    • /
    • 제13권5호
    • /
    • pp.423-429
    • /
    • 2001
  • 본 연구에서는 초기양생 중에 수평연속진동을 받는 콘크리트 시험체에 대하여 강도특성이 조사되었다. 실험변수로서 진동속도(0.25, 0.5, 1, 2, 4 kine)와 진동가력시간(3, 6, 12, 24 hrs)을 택하였다. 압축강도, 쪼갬인장강도 및 부착강도가 비교되었으며, 밀도와 재료분리현상이 조사되었다. 실험 결과, 진동속도 0.25 kine에서는 진동가력시간에 관계없이 모든 시험체에서 강도의 감소가 거의 발생하지 않았고, 또한 진동속도 0.5 kine에서 3시간의 진동을 받은 경우에도 강도의 감소가 없었다. 전체 시험체에 있어서 밀도가 증가하였으며, 재료분리현상은 발견되지 않았다.

플라이애쉬 콘크리트의 강도 및 역학적 특성에 관한 연구 (A Study on the Strength and Mechanical Characteristics of Normal and High-Strength Fly-Ash Concretes)

  • 오병환;고재군
    • 콘크리트학회지
    • /
    • 제3권2호
    • /
    • pp.87-95
    • /
    • 1991
  • 본 연구에서는 새로운 건설소재로서 플라이애쉬 콘크리트를 효율적으로 이용하기 위하여 플라이애쉬 콘크리트의 배합 특성에 따른 강도 및 역학적특성에 대하여 연구하였다. 이를 위하여 포괄적인 실험연구를 수행하였으며, 보통강도 및 고강도 플라이애쉬 콘크리트의 특성연구를 수행하였다. 본 연구에서는 플라이애쉬의 혼입량을 0%에서 30%까지 변화시키면서 플라이애쉬의 혼입효과를 규명하였고, 각 재령별 강도증진률을 도출하였다. 본 연구결과로부터 소요강도를 얻기 위해 요구되는 물-시멘트비와 플라이애쉬의 최적혼입량을 도출하였다. 본 연구에서는 또한 플라이애쉬 콘크리트의 휨강도, 할열인장강도 및 탄성게수 예측공식을 도출하여 제시하였다.