• Title/Summary/Keyword: splitting effect

검색결과 331건 처리시간 0.033초

Growth and Photocurrent Properties for $CuAlSe_2$ Single Crystal Thin film ($CuAlSe_2$ 단결정 박막의 성장과 광전류 특성)

  • Hong, Kwang-Joon;Baek, Seong-Nam
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.226-229
    • /
    • 2004
  • A stoichiometric mixture of evaporating materials for $CuAlSe_2$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $CuAlSe_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $680^{\circ}C$ and $410^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CuAlSe_2$ single crystal thin films measured with Hall effect by van der Pauw method are $9.24{\times}10^{16}\;cm^{-3}$ and $295\;cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CuAlSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)\;=\;2.8382\;eV\;-\;(8.68{\times}10^{-4}\;eV/K)T^2/(T+155K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $CuAlSe_2$ have been estimated to be 0.2026 eV and 0.2165 eV at 10K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $CuAlSe_2$. The three photocurrent peaks observed at 10K are ascribed to the $A_1-$, $B_1-$, and $C_1$-exciton peaks for n = 1.

  • PDF

Photocatalytic hydrogen production by water splitting using novel catalysts under UV-vis light irradiation

  • Marquez, Francisco;Masa, Antonio;Cotto, Maria;Garcia, Abraham;Duconge, Jose;Campo, Teresa;Elizalde, Eduardo;Morant, Carmen
    • Advances in Energy Research
    • /
    • 제2권1호
    • /
    • pp.33-45
    • /
    • 2014
  • Photocatalytic hydrogen generation by water splitting ($H_2O_{(1)}{\rightarrow}H_2_{(g)}+1/2O_2_{(g)}$) has been studied on photocatalysts based on Zn, Cd, Fe and Cu, synthesized by coprecipitation. Iron and copper nanoparticles were incorporated as cocatalysts to enhance the photocatalytic activity of the ZnCd solid solution. The effect of the different synthesis parameters (temperature, elemental atomic ratios, amount of Cu and Fe incorporated in the catalyst and calcination temperature) on the photocatalytic production of hydrogen has been studied in order to determine the best experimental synthesis conditions. The catalysts have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and BET. The experiments of photocatalytic water splitting were performed in aqueous solution of the photocatalysts previously dispersed in a soft ultrasound bath. The photocatalysts were irradiated under different lights ranging from 220 to 700 nm. The photocatalytic activity was found to be clearly dependent on the specific area of the photocatalyst.

Photocurrent Properties and Growth of $CuAlSe_2$ Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 $v_2$ 단결정 박막의 성장과 광전류 특성)

  • You, Sang-Ha;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.282-285
    • /
    • 2003
  • Single crystal $CuAlSe_2$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at $410\;^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $CuAlSe_2$ source at $680\;^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $CuAlSe_2$ thin films measured with Hall effect by van der Pauw method are $9.24{\times}10^{16}\;cm^{-3}\;and\;295\;cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CuAlSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)\;=\;2.8382\;eV\;-\;(8.68\;{\times}\;10^{-4}eV/K)T^2/(T\;+\;155\;K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $CuAlSe_2$ have been estimated to be 0.2026 eV and 0.2165 eV at 10 K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the $\Delta$so definitely exists in the ${\Gamma}_5$ states of the valence band of the $CuAlSe_2$. The three photocurrent peaks observed at 10 K are ascribed to the $A_1-$, $B_1-$, and $C_1$-exciton peaks for n = 1.

  • PDF

Growth and photocurrent properties for ZnO Thin Film by Pulsed Laser Deposition (펄스 레이저 증착(PLD)법에 의한 ZnO 박막 성장과 특성)

  • Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.74-75
    • /
    • 2005
  • ZnO epilayer were synthesized by the pulesd laser deposition(PLD) process on $Al_2O_3$ substrate after irradiating the surface of the ZnO sintered pellet by the ArF(193 nm) excimer laser. The epilayers of ZnO were achieved on sapphire ($Al_2O_3$) substrate at a temperature of $400^{\circ}C$. The crystalline structure of epilayer was investigated by the photoluminescence. The carrier density and mobility of ZnO epilayer measured with Hall effect by van der Pauw method are $8.27{\times}10^{16}cm^{-3}$ and $299cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the ZnO obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T) = 3.3973 eV - ($2.69{\times}10^{-4}$ eV/K)$T_2$/(T + 463 K). The crystal field and the spin-orbit splitting energies for the valence band of the ZnO have been estimated to be 0.0041 eV and 0.0399 eV at 10 K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the $\triangle$so definitely exists in the $\ulcorner_6$ states of the valence band of the ZnO. The three photocurrent peaks observed at 10K are ascribed to the $A_1-$, $B_1-$, and $C_1$-exciton peaks for n = 1.

  • PDF

Growth and photocurrent study on the splitting of the valence band for ZnIn2S4 single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy (HWE)법에 의한 ZnIn2S4 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Hong, Kwang-Joon
    • Journal of Sensor Science and Technology
    • /
    • 제16권6호
    • /
    • pp.419-427
    • /
    • 2007
  • Single crystal $ZnIn_{2}S_{4}$ layers were grown on a thoroughly etched semi-insulating GaAs(100) substrate at $450^{\circ}C$ with the hot wall epitaxy (HWE) system by evaporating the polycrystal source of $ZnIn_{2}S_{4}$ at $610^{\circ}C$ prepared from horizontal electric furnace. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $ZnIn_{2}S_{4}$ thin films measured with Hall effect by van der Pauw method are $8.51{\times}10^{17}\;electron/cm^{-3}$, $291{\;}cm^{2}/v-s$ at 293 K, respectively. The photocurrent and the absorption spectra of $ZnIn_{2}S_{4}$/SI(Semi-Insulated) GaAs(100) are measured ranging from 293 K to 10 K. The temperature dependence of the energy band gap of the $ZnIn_{2}S_{4}$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)$=2.9514 eV. ($7.24{\times}10^{-4}\;eV/K$)$T^{2}$/(T+489 K). Using the photocurrent spectra and the Hopfield quasicubic model, the crystal field energy(${\Delta}cr$) and the spin-orbit splitting energy(${\Delta}so$) for the valence band of the $ZnIn_{2}S_{4}$ have been estimated to be 167.8 meV and 14.8 meV at 10 K, respectively. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1}$-, $B_{1}$-, and $C_{41}$-exciton peaks.

An Experimental Study on Splitting Bond Strength of RC Column Reinforced with External Steel-Band (스틸밴드로 외부 보강된 철근콘크리트 기둥의 부착강도에 관한 실험적 연구)

  • Kim, Chang-Sik;Yoon, Seung-Joe;Ho, Seung-Woong;Yoon, Pil-Joong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제18권6호
    • /
    • pp.41-49
    • /
    • 2014
  • In order to investigation splitting bond strength of the deformed longitudinal reinforcing bars in the R C members strengthened laterally with the external steel-band, a total 9 sets of test re-bars with and without active confining force given by the external steel-band are pulled monotonically until failure. Test results indicate that the bond strength becomes higher with the increase in number of steel-band sets and their initial stress magnitude. This is due to the active confining force given by the steel-band, and passive confining forces given by the steel-band and transverse reinforcements, in which the passive confinement effect varies depending on the magnitude of active confining force. An equation to estimate the splitting bond strengths for the R C members strengthened laterally with the external steel-band is developed based on the several experimental results of the present study.

Growth and photocurrent study on the splitting of the valence band for $CuInSe_2$ single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy(HWE)범에 의한 $CuInSe_2$ 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Hong Myungseak;Hong Kwangjoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • 제14권6호
    • /
    • pp.244-252
    • /
    • 2004
  • A stoichiometric mixture of evaporating materials for $CuInSe_2$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $_CuInSe2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $620^{\circ}C$ and $410^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CuInSe_2$ single crystal thin films measured with Hall effect by van der Pauw method are $9.62\times10^{16}/\textrm{cm}^3$, 296 $\textrm{cm}^2$/Vㆍs at 293 K, respectively. The temperature dependence of the energy band gap of the $CuInSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T) = 1.1851 eV -($8.99\times10^{-4} eV/K)T^2$(T + 153 K). The crystal field and the spin-orbit splitting energies for the valence band of the CuInSe$_2$ have been estimated to be 0.0087 eV and 0.2329 eV at 10 K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the Δso definitely exists in the $\Gamma$6 states of the valence band of the $CuInSe_2$. The three photocurrent peaks observed at 10 K are ascribed to the $A_1-, B_1$-와 $C_1$-exciton peaks for n = 1.

Compression Strength Size Effect on Carbon-PEEK Fiber Composite Failing by Kink Band Propagation

  • Kim, Jang-Ho
    • KCI Concrete Journal
    • /
    • 제12권1호
    • /
    • pp.57-68
    • /
    • 2000
  • The effect of structure size on the nominal strength of unidirectional fiber-polymer composites, failing by propagation of a kink band with fiber microbuckling, is analyzed experimentally and theoretically. Tests of novel geometrically similar carbon-PEEK specimens, with notches slanted so as to lead to a pure kink band (without shear or splitting cracks), are conducted. The specimens are rectangular strips of widths 15.875, 31.75. and 63.5 mm (0.625, 1.25 and 2.5 in and gage lengths 39.7, 79.375 and 158.75 mm (1.563, 3.125 and 6.25 in.). They reveal the existence of a strong (deterministic. non-statistical) size effect. The doubly logarithmic plot of the nominal strength (load divided by size and thickness) versus the characteristic size agrees with the approximate size effect law proposed for quasibrittle failures in 1983 by Bazant This law represents a gradual transition from a horizontal asymptote, representing the case of no size effect (characteristic of plasticity or strength criteria), to an asymptote of slope -1/2 (characteristic of linear elastic fracture mechanics. LEFM) . The size effect law for notched specimens permits easy identification of the fracture energy of the kink bandand the length of the fracture process zone at the front of the band solely from the measurements of maximum loads. Optimum fits of the test results by the size effect law are obtained, and the size effect law parameters are then used to identify the material fracture characteristics, Particularly the fracture energy and the effective length of the fracture process zone. The results suggest that composite size effect must be considered in strengthening existing concrete structural members such as bridge columns and beams using a composite retrofitting technique.

  • PDF

Hydrogen Storage Characteristics Using Redox of $M/Fe_2O_3$ (M = Rh, Ce and Zr) Mixed Oxides ($M/Fe_2O_3$ (M = Rh, Ce 및 Zr) 혼합 산화물의 산화-환원을 이용한 수소 저장 특성)

  • Ryu, Jae-Chun;Lee, Dong-Hee;Kim, Young-Ho;Yang, Hyun-Soo;Park, Chu-Sik;Wang, Gab-Jin;Kim, Jong-Won
    • Journal of Hydrogen and New Energy
    • /
    • 제17권1호
    • /
    • pp.21-30
    • /
    • 2006
  • [ $M/Fe_2O_3$ ] (M=Rh, Ce and Zr) mixed oxides were prepared using urea method to develop a medium for chemical hydrogen storage by their redox cycles. And their redox behaviors by repeated cycles were studied using temperature programmed reaction(TPR) technique. Additives such as Rh, Ce and Zr were added to iron oxides in order to lower the reaction temperature for reduction by hydrogen and re-oxidation by water-splitting. From the results, concentration of urea used as a precipitant had little effect on particle size and reduction property of iron oxide. TPR patterns of iron oxide consisted of two reduction peaks due to the course of $Fe_2O_3\;{\rightarrow}\;Fe_3O_4\;{\rightarrow}\;Fe$. The results of repeated redox tests showed that Rh added to iron oxide have an effect on lowering the re-oxidation temperature by water-splitting. Meanwhile, Ce and Zr additives played an important role in prevention of deactivation by repeated cycles. Finally, Fe-oxide(Rh, Ce, Zr) sample added with Rh, Ce and Zr showed the lowest re-oxidation temperature by water-splitting and maintained high $H_2$ recovery in spite of the repeated redox cycles. Consequently, it is expected that Fe-oxide(Rh, Ce, Zr) sample can be a feasible medium for chemical hydrogen storage using redox cycle of iron oxide.

Performance Enhancement Study Using Passive Control of Shock-Boundary Layer Interaction in a Transonic/Supersonic Compressor Cascade (천음속/초음속 압축기 익렬에서 Shock-Boundary Layer 상호작용의 수동적 제어에 의한 성능 향상 연구)

  • Kim, Sang-Deok;Gwon, Chang-O;Sa, Jong-Yeop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제20권9호
    • /
    • pp.2944-2952
    • /
    • 1996
  • In this paper the CSCM type upwind flux difference splitting Navier-Stokes method has been applied to study the ARL-SL19 transoni $c^ersonic compressor cascade flow. First, the general characteristics of baseline cascade flow were analyzed. At freestream Mach n.1.612 and exit/inlet pressure ratio 2.15, the results from current laminar flow were compared well in suction surface with the experiment; however, not well in pressure surface. Second, numerical study of the transoni $c^ersonic compressor cascade flow demonstrated the effectiveness of a passive control by the various size cavities. A cavity under the shock foot point at the suction surface of the blades was used as a passive control. The passive control of shock-boundary layer interaction by a cavity reduced total pressure losses. The effect of cavity length and depth was studied. The total pressure loss was reduced by about 10% and the isentropic efficiency was improved slightly. The effect of cavity depth in current study(d/l = 0.05, 0.02) was not found strong. Further adequate turbulence modeling and TVD schemes would help to capture the shock more accurately and increase the effectiveness of the current shock-boundary layer interaction study using upwind flux difference splitting computational methods.thods.