• Title/Summary/Keyword: split tensile test

Search Result 90, Processing Time 0.034 seconds

Tensile Strength Characteristics of Cement Paste Mixed with Fibers (섬유가 혼합된 시멘트 페이스트의 인장강도 특성에 관한 연구)

  • Park, Sung-Sik;Hou, Yaolong
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.3
    • /
    • pp.5-16
    • /
    • 2015
  • The characteristics of tensile strength of fiber-reinforced grouting (cement paste) injected into rocks or soils were studied. A tensile strength of such materials utilized in civil engineering has been commonly tested by an indirect splitting tensile test (Brazilian test). In this study, a direct tensile testing method was developed with built-in cylinder inside a cylindrical specimen with 15 cm in diameter and 30 cm in height. The testing specimen was prepared with 0%, 0.5%, or 1% (by weight) of a PVA or steel fiber reinforced mortar. A specimen with 5 cm in diameter and 10 cm in height was also prepared and tested for the splitting tensile test. Each specimen was air cured for 7 days or 28 days before testing. The tensile strength of built-in cylinder test showed 96%-290% higher than that of splitting tensile test. The 3D finite element analyses on these tensile tests showed that the tensile strength from built-in cylinder test had was 3 times higher than that of splitting tensile test. It is similar to experimental result. As an amount of fiber increased from 0% to 1%, its tensile strength increased by 119%-190% or 23%-131% for 7 days or 28 days-cured specimens, respectively. As a curing period increased from 7 days to 28 days, its strength decreased. Most specimens reinforced with PVA fiber showed tensile strength 14%-38% higher than that of steel fiber reinforced specimens.

Johnson-Cook constitutive relation of sheet metals for an auto-body with a tension split Hopkinson bar apparatus (Tension Split Hopkinson bar를 이용한 자동차 성형용 금속 박판의 Johnson-Cook 구성방정식 결정)

  • Kang, Woo-Jong;Cho, Sang-Soon;Huh, Hoon;Jung, Dong-Taek
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.84-88
    • /
    • 1997
  • The Jonhnson-Cook constitutive relation has been used in dynamic plasticities. The constants of the Jonhson-Cook relation of sheet metals for an autobody is not known yet. In this paper, the material properties of SPCEN, SPCC and SPRC in the high strain rate states have been acquired. A new tension split Hopkinson bar was used in high speed tensile tests of sheet metals. The experimental results acquired from the apparatus are used to determine the constants of Johnson-Cook constitutive relation of sheet metals. This results can be used to analysis of crashworthness.

  • PDF

Dynamic Deformation Behavior of Rubber and Ethylene Copolymer Under High Strain Rate Compressive Loading (SHPB기법을 사용한 고무와 합성수지의 고변형률 속도 하중 하에서의 동적 변형 거동)

  • 이억섭;이종원;김경준
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.122-130
    • /
    • 2004
  • It is well known that a specific experimental method, the Split Hopkinson Pressure Bar (SHPB) technique is a best experimental technique to determine the dynamic material properties under the impact compressive loading conditions with strain-rate of the order of 10$^3$/s∼10$^4$/s. This type of experimental procedure has been widely used with proper modification on the test setups to determine the varying dynamic response of materials for the dynamic boundary conditions such as tensile and fracture as well. In this paper, dynamic compressive deformation behaviors of a rubber and an Ethylene Copolymer materials widely used for the isolation of vibration from varying structures under dynamic loading are estimated using a Split Hopkinson Pressure Bar technique.

Tensile Properties of Fiber Reinforced Concrete

  • Cho, Baik-Soon;Back, Sung-Yong;Park, Hyun-Jung
    • KCI Concrete Journal
    • /
    • v.12 no.2
    • /
    • pp.85-93
    • /
    • 2000
  • Potentially significant mechanical improvements in tension can be achieved by the incorporation of randomly distributed, short discrete fibers in concrete. The improvements due to the incorporation fibers significantly influence the composite stress - strain ($\sigma$-$\varepsilon$) characteristics. In general incorporating fibers in a plain concrete has relatively small effect on its precracking behavior. It, however, alters its post-cracking behavior quite significantly, resulting in greatly improved ductility, crack controls, and energy absorption capacity (or toughness). Therefore, a thorough understanding the complete tensile stress - strain ($\sigma$-$\varepsilon$) response of fiber reinforced concrete is necessary for proper analysis while using structural components made with fiber reinforced concrete. Direct tensile stress applied to a specimen is in principle the simplest configuration for determining the tensile response of concrete. However, problems associated with testing brittle materials in tension include (i) the problem related to gripping of the specimen and (ii) the problem of ensuring centric loading. Routinely, indirect tension tests for plain concrete, flexural and split-cylinder tests, have been used as simpler alternatives to direct uniaxial tension test. They are assumed to suitable for fiber reinforced concrete since typically such composites comprise 98% by volume of plain concrete. Clearly since the post-cracking characteristics are significantly influenced by the reinforcing parameters and interface characteristics, it would be fundamentally incorrect to use indirect tensile tests for determining the tensile properties of fiber reinforced concrete. The present investigation represents a systematic look at the failure and toughening mechanisms and macroscopic stress - strain ($\sigma$-$\varepsilon$) characteristics of fiber reinforced concrete in the uniaxial tension test. Results from an experimental parametric study involving used fiber quantity, type, and mechanical properties in the uniaxial tension test are presented and discussed.

  • PDF

Mechanical and durability properties of marine concrete using fly ash and silpozz

  • Jena, T.;Panda, K.C.
    • Advances in concrete construction
    • /
    • v.6 no.1
    • /
    • pp.47-68
    • /
    • 2018
  • This article reports the utilization of fly ash (FA) waste product from industry and silpozz which is an agro-waste from agriculture as an environmental friendly material in construction industry. The evaluation of strength and durability study was observed using FA and silpozz as a partial replacement of Ordinary Portland Cement (OPC). The studied parameters are compressive strength, flexural strength, split tensile strength and bond strength as well as the durability study involves the acid soluble chloride (ASC), water soluble chloride (WSC), water absorption and sorptivity. Scanning electron microscopy (SEM) and XRD of selected samples are also done. It reveals from the test results that the deterioration factor (DF) in compressive strength is 4% at 365 days. The DF of split tensile strength and flexural strength is 0.96% and 0.6% at 90 days respectively. The minimum slip is 1mm and 1.1mm after 28 days of testing bond strength for NWC and SWC sample respectively. The percentage decrease in bond strength is 10.35% for 28 days SWC samples. The pre-cast blended concrete samples performed better to chloride diffusion. Modulus of elasticity of SWC samples are also studied.The water absorption and sorptivity tests are conducted after 28 days of curing.

Experimental Study on Unconfined Compression Strength and Split Tensile Strength Properties in relation to Freezing Temperature and Loading Rate of Frozen Soil (동결 온도와 재하속도에 따른 동결토의 일축압축 및 쪼갬인장 강도특성)

  • Seo, Young-Kyo;Choi, Heon-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.19-26
    • /
    • 2012
  • Recently the world has been suffering from difficulties related to the demand and supply of energy due to the democratic movements sweeping across the Middle East. Consequently, many have turned their attention to never-developed extreme regions such as the polar lands or deep sea, which contain many underground resources. This research investigated the strength and initial elastic modulus values of eternally frozen ground through a uniaxial compression test and indirect tensile test using frozen artificial soil specimens. To ensure accurate test results, a sandymud mixture of standard Jumunjin sand and kaolinite (20% in weight) was used for the specimens in these laboratory tests. Specimen were prepared by varying the water content ratio (7%, 15%, and 20%). Then, the variation in the strength value, depending on the water content, was observed. This research also established three kinds of environments under freezing temperatures of $-5^{\circ}C$, $-10^{\circ}C$, and $-15^{\circ}C$. Then, the variation in the strength value was observed, depending on the freezing environment. In addition, the tests divided the loading rate into 6 phases and observed the variation in the stress-strain ratio, depending on the loading rate. The test data showed that a lower freezing temperature resulted in a larger strength value. An increase in the ice content in the specimen with the increase in the water content ratio influenced the strength value of the specimen. A faster load rate had a greater influence on the uniaxial compression and indirect tensile strengths of a frozen specimen and produced a different strength engineering property through the initial tangential modulus of elasticity. Finally, the long-term strength under a constant water content ratio and freezing temperature was checked by producing stress-strain ratio curves depending on the loading rate.

Tensile Strength Characteristics of Compacted Granite Soils with Variation of the Molding Moisture Contents (함수비 변화에 따른 다짐 화강토의 인장강도 특성)

  • Kim, Chan-Kee
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.4
    • /
    • pp.63-70
    • /
    • 2007
  • The soil samples used in this study were prepared with the residual granite soils passed through the #4 sieve and obtained from Pocheon in Gyeonggi-Ki do. Specifically, five types of samples were prepared. Sample A which is a natural state soil was classified as SM according to the uses. Samples of B, C, D, and E were prepared by mixing Sample A with bentonite and were classified as SC according to the uses. The plasticity indexes of samples B, C, D, and E were 15, 25, 30, and 40, respectively. The specimens, whose dimensions are 100mm by 127.5mm, were prepared by A method of ASTM D 698 with the Proctor mold. In experiments, the loading with the 1%/min was applied. Four different disk diameters, 13mm, 26mm, 38mm, and 52mm were used in the Improved Unconfined Penetration (IUP) tests. To compare the tensile strengths, the split tensile tests were also conducted on the same specimens used for the IUP tests. To find out the effects of moisture contents, plasticity Index of specimens on the tensile strength, six different water contents were used for making a specimen.

Dynamic Material Test of Sinter-Forged Cu-Cr Alloy and Application to the Impact Characteristics of Vacuum Interrupter (구리-크롬 합금의 조성비에 따른 동적실험 및 진공 인터럽터 충격특성에의 적용)

  • Song, Jung-Han;Lim, Ji-Ho;Huh, Hoon
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.447-452
    • /
    • 2004
  • Vacuum interrupters in order to be used in various switch-gear components such as circuit breakers, distribution switches, contactors, etc. spread the arc uniformly over the surface of the contacts. The electrodes of vacuum interrupters are made of sinter-forged Cu-Cr materials for good electrical and mechanical characteristics. Since the closing velocity is 1-2m/s and impact deformation of the electrode depends on the strain rate at that velocity, the dynamic behavior of the sinter-forged Cu-Cr is a key to investigate the impact characteristics of the electrodes. The dynamic response of the material at intermediate strain rate is obtained from the high speed tensile test machine test and at the high strain rate is obtained from the split Hopkinson pressure bar test. Experimental results from both quasi-static and dynamic compressive tests are interpolated to construct the Johnson-Cook model as the constitutive relation that should be applied to simulation of the dynamic behavior of the electrodes. The impact characteristics of a vacuum interrupter are investigated with computer simulations by changing the amount of chromium content.

  • PDF

Development of Fatigue Model for Airfield Concrete Pavement (공항 콘크리트 포장의 피로모형 개발 연구)

  • Kwon, Soo-Ahn;Yang, Hong-Seok;Suh, Young-Chan
    • International Journal of Highway Engineering
    • /
    • v.6 no.3 s.21
    • /
    • pp.27-35
    • /
    • 2004
  • There are two methods in estimating the remaining life of in-service airfield concrete pavement. They are a method simply using the past accumulated traffic and a method using the theoretical mechanistic analysis. Since the former method is somewhat far from the actual condition, the latter method is widely used by most engineers and researchers. The most essential component of the latter method is the fatigue model of the concrete slab. A fatigue model for airfield concrete pavement is developed in this study by a series of fatigue tests using 30 concrete cylinder specimens obtained from a 10 year old in-service airfield concrete slab. Strengths for the stress ratio calculation were obtained from the split tensile test of the cores sliced. Fatigue test mode was repeated split tensile test. The R2 of developed fatigue model was 0.5. Specimens taken from another airport had been tested for validation of the model. The results showed a good fit to the model. It was also found that the fatigue life predicted from the model was a tittle greater when the stress ratio is greater than 80 percent than other fatigue models developed earlier in America.

  • PDF

Effect of Fly Ash on Rheology and Strength of Recycled Aggregate Concrete (순환골재와 플라이애쉬가 콘크리트 유동성 및 강도에 미치는 영향)

  • Kim, Kyu-Hun;Shin, Myoung-Su;Kong, Young-Sik;Cha, Soo-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.241-250
    • /
    • 2013
  • As the amount of construction wastes increase, reuse of demolished concrete is being considered in research areas. Reflecting these interests, this experiment was performed to clarify concrete's mechanical property and workability using recycled aggregate as a coarse aggregate. Eleven cases of concrete specimens were produced by changing the rates of replacement of coarse recycled aggregate, replacement of fly ash, design strength, and moisture state of coarse aggregate. Compressive and tensile split strength tests were taken to study the mechanical properties of hardened concrete. To verify flowability of fresh concrete, a slump test and a flow curve test using ICAR Rheometer were performed. It was found that using recycled aggregate and fly ash leads good workability by testing slump and flow curve. The yield stress of fresh concrete decreased with increase of recycled aggregate substitution rate. Through the test, it was confirmed that there is inversely proportional relationship between the slump and yield stress roughly. Recycled aggregate concrete containing fly ash has considerably lower plasticity viscosity than not containing fly ash. Strength test results showed that recycled aggregate tended to decrease compressive and tensile strength of concrete, when recycled aggregate was used as a coarse aggregate. Using over 30% recycled aggregate caused significant decreases in compressive and tensile strength. Replacing 30% cement with fly ash was helpful to improve the long-term strength of concrete.