• Title/Summary/Keyword: spline parameterization

Search Result 25, Processing Time 0.025 seconds

Machined Surface Inspection Based on Surface Fairing on the Machine Tool (곡면평활화를 고려한 공작기계상에서의 가공곡면 검사)

  • Lee, Se-Bok;Kim, Gyeong-Don;Jeong, Seong-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.937-945
    • /
    • 2000
  • The assessment of machined surface is difficult because the freeform surface must be evaluated by surface fairness as well as dimensional accuracy. In this study, the machined freeform surface is modeled by interpolating the data measured on the machine tool into the mathematical continuous surface, and then the surface model is improved with the parameterization to minimize surface fairness. The accuracy reliability of the measured data is confirmed through compensation of volumetric errors of the machine tool and of probing errors. Non-uniform B-spline surface interpolation method is adopted to guarantee the continuity of surface model. Surface fairness is evaluated with the consideration of normal curvature on the interpolated surface. The validity and usefulness of the proposed method is examined through computer simulation and experiment on the machine tool.

Spline parameterization based nonlinear trajectory optimization along 4D waypoints

  • Ahmed, Kawser;Bousson, Kouamana;Coelho, Milca de Freitas
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.5
    • /
    • pp.391-407
    • /
    • 2019
  • Flight trajectory optimization has become an important factor not only to reduce the operational costs (e.g.,, fuel and time related costs) of the airliners but also to reduce the environmental impact (e.g.,, emissions, contrails and noise etc.) caused by the airliners. So far, these factors have been dealt with in the context of 2D and 3D trajectory optimization, which are no longer efficient. Presently, the 4D trajectory optimization is required in order to cope with the current air traffic management (ATM). This study deals with a cubic spline approximation method for solving 4D trajectory optimization problem (TOP). The state vector, its time derivative and control vector are parameterized using cubic spline interpolation (CSI). Consequently, the objective function and constraints are expressed as functions of the value of state and control at the temporal nodes, this representation transforms the TOP into nonlinear programming problem (NLP). The proposed method is successfully applied to the generation of a minimum length optimal trajectories along 4D waypoints, where the method generated smooth 4D optimal trajectories with very accurate results.

Investigation on the Description Method of Extrusion Die Surface using B-Spline Surface Scheme (B-스플라인 곡면기법을 이용한 압출금형 곡면의 표현방법에 관한 연구)

  • 유동진;임종훈
    • Transactions of Materials Processing
    • /
    • v.12 no.2
    • /
    • pp.142-150
    • /
    • 2003
  • To construct the extrusion die surface, a B-Spline surface scheme based on the cubic B-Spline curve interpolation method is proposed in the present work. The inlet and outlet profiles are described with B-Spline curves by using the centripetal method for uniform parameterization. The interior control points of surface are generated using the derivative characteristics of B-Spline curve. A complete B-Spline surface is constructed by using appropriate coordinate transformation and knot deletion. In the present study, a quantitative measure for the control of surface is suggested by introducing the tangential vector and inclination angles at the inlet and outlet sections. To verify the validity of the proposed method, automatic surface generation is carried out for the various types of extrusion die surface.

A new approach for B-spline surface interpolation to contours (윤곽선들의 B-spline 곡면 보간을 위한 새로운 방식)

  • Park Hyungjun;Jung Hyung Bae;Kim Kwangsoo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.474-479
    • /
    • 2003
  • This paper addresses the problem of B-spline surface interpolation to serial contours, where the number of points varies from contour to contour. A traditional lofting approach creates a set of B-spline curves via B-spline curve interpolation to each contour, makes them compatible via degree elevation and knot insertion, and performs B-spline surface lofting to get a B-spline surface interpolating them. The approach tends to result in an astonishing number of control points in the resulting B-spline surface. This situation arises mainly from the inevitable process of progressively merging different knot vectors to make the B-spline curves compatible. This paper presents a new approach for avoiding this troublesome situation. The approach includes a novel process of getting a set of compatible B-spline curves from the given contours. The process is based on the universal parameterization [1,2] allowing the knots to be selected freely but leading to a more stable linear system for B-spline curve interpolation. Since the number of control points in each compatible B-spline curve is equal to the highest number of contour points, the proposed approach can realize efficient data reduction and provide a compact representation of a B-spline surface while keeping the desired surface shape. Some experimental results demonstrate its usefulness and quality.

  • PDF

Trivariate B-spline Approximation of Spherical Solid Objects

  • Kim, Junho;Yoon, Seung-Hyun;Lee, Yunjin
    • Journal of Information Processing Systems
    • /
    • v.10 no.1
    • /
    • pp.23-35
    • /
    • 2014
  • Recently, novel application areas in digital geometry processing, such as simulation, dynamics, and medical surgery simulations, have necessitated the representation of not only the surface data but also the interior volume data of a given 3D object. In this paper, we present an efficient framework for the shape approximations of spherical solid objects based on trivariate B-splines. To do this, we first constructed a smooth correspondence between a given object and a unit solid cube by computing their harmonic mapping. We set the unit solid cube as a rectilinear parametric domain for trivariate B-splines and utilized the mapping to approximate the given object with B-splines in a coarse-to-fine manner. Specifically, our framework provides user-controllability of shape approximations, based on the control of the boundary condition of the harmonic parameterization and the level of B-spline fitting. Experimental results showed that our method is efficient enough to compute trivariate B-splines for several models, each of whose topology is identical to a solid sphere.

Automatic Surface Generation for Extrusion Die of Non-symmetric H- and U-shaped Sections (비축대칭 H-형 및 U-형상의 압출금형 곡면의 자동생성)

  • 임종훈;유동진;양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.318-321
    • /
    • 2003
  • In order to generate the extrusion die surface of non-symmetric H- and U-shaped sections, an automatic surface construction method based on B-spline surface and scalar field theory is proposed in this study. The isothermal lines and stream lines designed in the scalar field are introduced to find the control points which are used in constructing B-spline surfaces. Intersected points between the isothermal lines and stream lines are used to construct B-spline surfaces. The inlet and outlet profiles are precisely described with B-spline curves by using the centripetal method for uniform parameterization. The extrusion die surface is generated by using the cubic curve interpolation in the u- and v-directions. A quantitative measure for the control of surface is suggested by introducing the tangential vectors at the inlet and outlet sections.

  • PDF

Automatic Surface Generation for Extrusion Die of Complicated Sections (복잡한 형상의 압출금형 곡면의 자동생성)

  • 임종훈;유동진;권혁홍;양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.197-200
    • /
    • 2003
  • An automatic surface construction method based on B-spline surface and scalar field theory is proposed to generate the extrusion die surface of complicated sections in this paper. The isothermal lines and stream lines designed in the scalar field are introduced to find the control points which are used in constructing B-spline surfaces. Intersected points between the isothermal lines and stream lines are used to construct B-spline surfaces. The inlet and outlet profiles are precisely described with B-spline curves by using the centripetal method for uniform parameterization. The extrusion die surface is generated by using the cubic curve interpolation in the u- and v-directions. A quantitative measure for the control of surface is suggested by introducing the tangential vectors at the inlet and outlet sections.

  • PDF

Automatic Surface Generation for Extrusion Die of Non-symmetric H-and U-shaped sections (비축대칭 H-형 및 U-형상의 압출금형 곡면의 자동생성)

  • 유동진;임종훈;양동열
    • Transactions of Materials Processing
    • /
    • v.12 no.6
    • /
    • pp.572-581
    • /
    • 2003
  • In this paper, an automatic surface construction method based on B-spline surface and scalar field theory is proposed to generate the extrusion die surface of non-symmetric H-and U-shaped sections. The isothermal lines and stream lines designed in the scalar field are introduced to find the control points which are used in constructing B-spline surfaces. Intersected points between the isothermal lines and stream lines are used to construct B-spline surfaces. The inlet and outlet profiles are precisely described with B-spline curves by using the centripetal method for uniform parameterization. The extrusion die surface is generated by using the cubic curve interpolation in the u-and v-directions. A quantitative measure for the control of surface is suggested by introducing the tangential vectors at the inlet and outlet sections. To verify the validity of the proposed method, automatic surface generation is carried out for extrusion die of non-symmetric H-and U-shaped sections.

An interpolation method of b-spline surface for hull form design

  • Jung, Hyung-Bae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.4
    • /
    • pp.195-199
    • /
    • 2010
  • This paper addresses the problem of B-spline surface interpolation of scattered points for a hull form design, which are not arbitrarily scattered, but can be arranged in a series of contours permitting variable number of points in the contours. A new approach that allows different parameter value for each point on the same contour has been adopted. The usefulness and quality of the interpolation has been demonstrated with some experimental results.

Design Variable Parametrization in Finite Element Models for Optimal Design of Electromagnetic Devices (전기기기의 최적설계를 위한 유한요소모델의 설계변수 매개화)

  • Kim, Chang-Hyun;Kim, Chang-Wook;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.146-148
    • /
    • 1998
  • For the shape design of electromagnetic devices using the FEM, the choice of design parameters influence to the success of the optimization process. If the design parameter distribution has a one to one corespondence with finite element model, we can encounter not only serious accuracy problem but also obtain a zigzag shape along the interface. The nodes between those design parameters can be parameterized by interpolating using one among many interpolation methods. The conventional parameterization of design parameters has a limit of application for shape, because design parameters and movable nodes are linearly intepolated. In this paper, using the B-spline curve that use to present any interfaces in computer graphics, the curvilinear parameterization between design parameters and node points is compared with the linear parameterization.

  • PDF