• Title/Summary/Keyword: spiral galaxies

검색결과 147건 처리시간 2.285초

APPLICATIONS OF SELF-REFERENCING METHOD TO THE VIRGO CLUSTER SPIRALS

  • Chung, Eun-Jung;Kim, Hyo-Young;Rhee, Myung-Hyun
    • Journal of The Korean Astronomical Society
    • /
    • 제38권4호
    • /
    • pp.371-384
    • /
    • 2005
  • Self-referencing method in revised-OTFTOOL is a new method in On-The-Fly(OTF) observation mode. It uses the source free regions of the observed frame as references instead of the OFFs references. We already analyzed and discussed its proprieties and advantages in the previous paper. In this paper, we make a statistical study about the self-referencing method by applying it to OTF mapping data of 27 Virgo spiral galaxies. We found that the self-referencing method solves the crooked baseline problem for every datacube. It straightens the baseline, and conserves the emissions. Compared with other data processing, the median filtering task 'mwflt' in AIPS, to use self-referencing method is more effective and safe not only to straighten the baseline but also to conserve the emission. For the strong CO galaxies, the data obtained by self-referencing method shows scarcely any difference from those reduced by conventional OFFs references and AIPS median filtering in the range of uncertainties. Undetected CO emissions in datacubes of conventional OFFs references are also not detected in those of self-referencing method. The self-referencing method is expected to save the observing time and simplify data reduction processes. Besides this, using self-referencing method will offer emission-free references more safely.

IUE SPECTRA OF THE SEYFERT 1 GALAXIES Mrk 335 and NGC 4051

  • HYUNG SIEK;KIM HYOUK;LEE Woo BAlK;LEE SEONG-JAE;RYU DONGSU;LEE HEE-WON
    • Journal of The Korean Astronomical Society
    • /
    • 제33권2호
    • /
    • pp.81-88
    • /
    • 2000
  • The international ultraviolet explorer (IUE) spectra of a low dispersion $\~6{\AA}$, have been investigated for two Seyfert 1 galaxies, Mrk 335 and NGC 4051, well known for the line variability. The electron densities of broad line region (BLR) of these variable Seyfert 1 galaxies have been derived, which showed a non-linear abrupt variation from $10^8$ to $10^{10} cm-3$ within a month. We also found the excitation (or temperature) changes in the Mrk 335 BLR from the IUE broad line profiles analysis, but no such evidence in the NGC 4051. The large amount of mass inflow activity through the bar or spiral structure of host galaxies, may trigger the density change in BLR and emission line variability for both objects. Mass of the giant black holes appear to be order of $10^7\;M_{\bigodot}$ for both variable Seyfert l's.

  • PDF

Color Dispersion as an Indicator of Stellar Population Complexity for Galaxies in Clusters

  • Lee, Joon Hyeop;Pak, Mina;Lee, Hye-Ran;Oh, Sree
    • The Bulletin of The Korean Astronomical Society
    • /
    • 제43권2호
    • /
    • pp.34.1-34.1
    • /
    • 2018
  • We investigate the properties of bright galaxies with various morphological types in Abell 1139 and Abell 2589, using the pixel color-magnitude diagram (pCMD) analysis. The 32 bright member galaxies ($Mr{\leq}-21.3mag$) are deeply imaged in the g and r bands in our CFHT/MegaCam observations, as a part of the KASI-Yonsei Deep Imaging Survey of Clusters (KYDISC). We examine how the features of their pCMDs depend on galaxy morphology and infrared color. We find that the g - r color dispersion as a function of surface brightness (${\mu}r$) shows better performance in distinguishing galaxy morphology, than the mean g - r color does. The best set of parameters for galaxy classification appears to be a combination of the minimum color dispersion at ${\mu}r{\leq}21.2mag\;arcsec-2$ and the maximum color dispersion at $20.0{\leq}{\mu}r{\leq}21.0mag\;arcsec-2$: the latter reflects the complexity of stellar populations at the disk component in a typical spiral galaxy. Moreover, the color dispersion of an elliptical galaxy appears to be correlated with its WISE infrared color ([4.6]-[12]). This indicates that the complexity of stellar populations in an elliptical galaxy is related to its recent star formation activities. From this observational evidence, we infer that gas-rich minor mergers or gas interactions may have usually occurred during the recent growth of massive elliptical galaxies.

  • PDF

INTERSTELLAR DUST IN M51 FROM IRC IMAGES

  • Egusa, Fumi;Sakon, I.;Onaka, T.;Matsuhara, H.;Arimatsu, K.;Suzuki, T.;Wada, T.;The IRC team, The IRC team
    • Publications of The Korean Astronomical Society
    • /
    • 제27권4호
    • /
    • pp.253-256
    • /
    • 2012
  • We present the IRC images of M51, a pair of interacting galaxies. Given the high angular resolution (7.4") and the wide field of view (~ 10') covering almost the entire M51 system, we investigate dust properties and their connection to the spiral arm structure. We have applied image-filtering processes including the wavelet analysis to the N3 image, which traces the total stellar mass best among the IRC bands. From this filtered image, the center, arm, and interarm regions are defined. A color, or flux ratio among the MIR bands, has been measured at each pixel (3.7" in size). We find a wide variety of S7/S11 with a difference between arm and interarm regions. We also find that at some positions S11 seems to be higher than predicted by MW dust models. Estimated contributions from the stellar continuum and gas emission lines to the band are not enough to explain this discrepancy. From these results, we deduce that the PAH ionization condition and its fraction to the total dust mass in M51 are different from those in MW.

How are S0 galaxies formed? A case of the Sombrero galaxy

  • Kang, Jisu;Lee, Myung Gyoon;Jang, In Sung;Ko, Youkyung;Sohn, Jubee;Hwang, Narae;Park, Byeong-Gon
    • The Bulletin of The Korean Astronomical Society
    • /
    • 제44권1호
    • /
    • pp.38.2-38.2
    • /
    • 2019
  • S0 galaxies are mostly known to be formed in dense environments from spiral progenitors. Recently, however, a new formation scenario has been suggested that field S0s can be formed from elliptical progenitors. The Sombrero galaxy (M104, NGC 4594) is a massive disk galaxy located in the field environment, and its morphological type has been controversial from Sa to E. Thus, it is an ideal target to test the new scenario. We trace the giant halo of M104 with globular clusters to test this scenario. From the wide images obtained with CFHT/MegaCam, we find a large number of globular clusters in this galaxy. We also confirm their membership by measuring the radial velocities from the spectra obtained with MMT/Hectospec. The color distribution of these globular clusters is bimodal, and blue (metal-poor) globular clusters are more spatially widely spread than red (metal-rich) globular clusters. This indicates that M104 hosts a giant metal-poor halo as well as an inner metal-rich halo. Combining this result with the fact that M104 is unusually massive and brighter than other spiral galaxies, we infer that M104 was indeed a massive elliptical galaxy that had formed a metal-rich halo by gas-rich mergers and a metal-poor halo by gas-poor mergers. In addition, we find young star clusters around the disk of M104, which shows that the disk formed after the spheroidal halos had formed. In conclusion, we suggest that M104 was originally a massive elliptical galaxy and was transformed to a lenticular galaxy by acquiring its disk later.

  • PDF

Galaxy Group Assembly Histories and the Missing Satellites Problem: A Case for the NGC 4437 Group

  • Kim, Yoo Jung;Lee, Myung Gyoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • 제46권1호
    • /
    • pp.33.1-33.1
    • /
    • 2021
  • The overprediction of the number of satellite galaxies in the LCDM paradigm compared to that of the Milky Way (MW) and M31 (the "missing satellites" problem) has been a long-standing issue. Recently, a large host-to-host scatter of satellite populations has been recognized both from an observational perspective with a larger sample and from a theoretical perspective including baryons, and it is crucial to collect diverse and complete samples with a large survey coverage to investigate underlying factors contributing to the diversity. In this study, we discuss the diversity in terms of galaxy assembly history, using satellite populations of both observed systems and simulated systems from IllustrisTNG. In addition to previously studied satellite systems, we identify satellite candidates from 25deg2 of Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) Wide layer around NGC 4437, a spiral galaxy of about one-fourth of the MW mass, paired with a ~2 magnitude fainter dwarf spiral galaxy NGC 4592. Using the surface brightness fluctuations (SBF) method, we confirm five dwarf galaxies as members of the NGC 4437 group, resulting in a total of seven members. The group consists of two distinct subgroups, the NGC 4437 subgroup and the NGC 4592 subgroup, which resembles the relationship between the MW and M31. The number of satellites is larger than that of other observed and simulated galaxy groups in the same host stellar mass range. However, the discrepancy decreases if compared with galaxy groups with similar magnitude gaps (V12 ~ 2), defined as the V-band magnitude difference between the two brightest galaxies in the group. Using simulated galaxy groups in IllustrisTNG, we find that groups with smaller V12 have richer satellite systems, host more massive dark matter halos, and have assembled more recently. These results show that the host-to-host scatter of satellite populations can be attributed to the diversity in galaxy assembly history and be probed by V12 to some degree and that NGC 4437 group is likely a recently assembled galaxy group with a large halo mass compared to galaxy groups of similar luminosity.

  • PDF

Molecular gas and star formation in early-type galaxies

  • Bureau, Martin
    • The Bulletin of The Korean Astronomical Society
    • /
    • 제36권2호
    • /
    • pp.65-65
    • /
    • 2011
  • Early-type galaxies represent the end point of galaxy evolution and, despite pervasive residual star formation, are generally considered "red and dead", that is composed exclusively of old stars with no star formation. Here, their molecular gas content is constrained and discussed in relation to their evolution, supporting the continuing importance of minor mergers and/or cold gas accretion. First, as part of the Atlas3D survey, the first complete, large, volume-limited survey of CO in normal early-type galaxies is presented. At least of 23% of local early-types possess a substantial amount of molecular gas, the necessary ingredient for star formation, independent of mass and environment but dependent on the specific stellar angular momentum. Second, using CO synthesis imaging, the extent of the molecular gas is constrained and a variety of morphologies is revealed. The kinematics of the molecular gas and stars are often misaligned, implying an external gas origin in over a third of all systems, more than half in the field, while external gas accretion must be shot down in clusters. Third, many objects appear to be in the process of forming regular kpc-size decoupled disks, and a star formation sequence can be sketched by piecing together multi-wavelength information on the molecular gas, current star formation, and young stars. Fourth, early-type galaxies do not seem to systematically obey all our usual prejudices regarding star formation (e.g. Schmidt-Kennicutt law, far infrared-radio continuum correlation), suggesting a greater diversity in star formation processes than observed in disk galaxies and the possibility of "morphological quenching". Lastly, a first step toward constraining the physical properties of the molecular gas is taken, by modeling the line ratios of density- and opacity-sensitive molecules in a few objects. Taken together, these observations argue for the continuing importance of (minor) mergers and cold gas accretion in local early-types, and they provide a much greater understanding of the gas cycle in the galaxies harbouring most of the stellar mass. In the future, better dust masses and dust-to-gas mass ratios from Herschel should allow to place entirely independent constraints on the gas supply, while spatially-resolved high-density molecular gas tracers observed with ALMA will probe the interstellar medium and star formation laws locally in a regime entirely different from that normally probed in spiral galaxies.

  • PDF

Nature of the Wiggle Instability of Galactic Spiral Shocks

  • Kim, Woong-Tae;Kim, Yonghwi;Kim, Jeong-Gyu
    • The Bulletin of The Korean Astronomical Society
    • /
    • 제39권1호
    • /
    • pp.37.2-37.2
    • /
    • 2014
  • Gas in disk galaxies interacts nonlinearly with a underlying stellar spiral potential to form galactic spiral shocks. Numerical simulations typically show that these shocks are unstable to the wiggle instability, forming non-axisymmetric structures with high vorticity. While previous studies suggested that the wiggle instability may arise from the Kelvin-Helmholtz instability or orbit crowding of gas elements near the shock, its physical nature remains uncertain. It was even argued that the wiggle instability is of numerical origin, caused by the inability of a numerical code to resolve a shock that is inclined to numerical grids. In this work, we perform a normal-mode linear stability analysis of galactic spiral shocks as a boundary-value problem. We find that the wiggle instability originates physically from the potential vorticity generation at a distorted shock front. As the gas follows galaxy rotation, it periodically passes through multiple shocks, successively increasing its potential vorticity. This sets up a normal-mode that grows exponentially, with a growth rate comparable to the orbital angular frequency. We show that the results of our linear stability analysis are in good agreement with the those of local hydrodynamic simulations of the wiggle instability.

  • PDF

TRGB Distances to Type Ia Supernova Host Galaxies in the Leo I Group and the Hubble Constant

  • Jang, In Sung;Lee, Myung Gyoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • 제38권2호
    • /
    • pp.45.1-45.1
    • /
    • 2013
  • Type Ia supernovae (SNe Ia) are a powerful tool to investigate the expansion history of the universe, because their peak luminosity is as bright as a galaxy and is known as an excellent standard candle. Since the discovery of the acceleration of the universe based on the observations of SNe Ia, higher than ever accuracy of their peak luminosity is needed to investigate various problems in cosmology. We started a project to improve the accuracy of the calibration of the peak luminosity of SNe Ia by measuring accurate distances to nearby resolved galaxies that host SNe Ia. We derive accurate distances to the SN Ia host galaxies using the method to measure the luminosity of the tip of the red giant branch (TRGB). In this study we present the results for M66 and M96 in the Leo I Group which are nearby spiral galaxies hosting SN 1989B and SN 1998bu, respectively. We obtain VI photometry of resolved stars in these galaxies from F555W and F814W images in the Hubble Space Telescope archive. We derive the distances to these galaxies from the luminosity of the TRGB. With these results we derive absolute maximum magnitudes of two SNe (SN 1989B in M66 and SN 1998bu in M96). We derive a value of the Hubble constant from the optical magnitudes of these SNe Ia and SN 2011fe in M101 based on our TRGB analysis. This value is similar to the values derived from recent estimates from WMAP9 and Planck results, but smaller than other recent determinations based on Cepheid calibration for SNe Ia luminosity.

  • PDF

Comparison of the extraplanar Hα and UV emissions in the halos of nearby edge-on spiral galaxies

  • Jo, Young-Soo;Seon, Kwang-il;Shinn, Jong-Ho;Yang, Yujin;Lee, Dukhang;Min, Kyoung-Wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • 제43권2호
    • /
    • pp.52.3-53
    • /
    • 2018
  • We compare vertical profiles of the extraplanar $H{\alpha}$ emission to those of the UV emission for 38 nearby edge-on late-type galaxies. It is found that detection of the "diffuse" extraplanar dust (eDust), traced by the vertically extended, scattered UV starlight, always coincides with the presence of the extraplanar $H{\alpha}$ emission. A strong correlation between the scale heights of the extraplanar $H{\alpha}$ and UV emissions is also found; the scale height at $H{\alpha}$ is found to be ~0.74 of the scale height at FUV. Our results may indicate the multiphase nature of the diffuse ionized gas and dust in the galactic halos. The existence of eDust in galaxies where the extraplanar $H{\alpha}$ emission is detected suggests that a larger portion of the extraplanar $H{\alpha}$ emission than that predicted in previous studies may be caused by $H{\alpha}$ photons that originate from H II regions in the galactic plane and are subsequently scattered by the eDust. This possibility raise an advantage in studying the extraplanar diffuse ionized gas. We also find that the scale heights of the extraplanar emissions normalized to the galaxy size correlate well with the star formation rate surface density of the galaxies. The properties of eDust in our galaxies is on a continuation line of that found through previous observations of the extraplanar polycyclic aromatic hydrocarbons emission in more active galaxies known to have galactic winds.

  • PDF