• Title/Summary/Keyword: spiral flow

Search Result 189, Processing Time 0.026 seconds

Basic Properties of Micropump with Magnetic Micromachine

  • Hisatomi, Shinichi;Yamazaki, Aya;Ishiyama, Kazushi;Sendoh, Masahiko;Yabukami, Shin;Agatsuma, Shigeto;Morooka, Keiko;Arai, Ken Ichi
    • Journal of Magnetics
    • /
    • v.12 no.2
    • /
    • pp.84-88
    • /
    • 2007
  • A micropump with spiral-type magnetic micromachine was fabricated. When a rotating magnetic field was applied, the machine rotated and pumped a surrounding liquid. We experimentally examined the basic properties of this pump. We found that the pressure and the flow rate could be controlled by the rotating frequency, and this pump could work under wide range kinematic viscosity. In addition, we proposed a disposable pump system using the machine. When a plate installed a fluid channel and the machine was set on a stage for generating a rotating magnetic field, the machine worked as the pump.

Clinical Study of Tumor Angiogenesis and Perfusion Imaging Using Multi-slice Spiral Computed Tomography for Breast Cancer

  • Xu, Na;Lei, Zhen;Li, Xiao-Long;Zhang, Jun;Li, Chen;Feng, Guo-Quan;Li, Di-Nuo;Liu, Jing-Yi;Wei, Qiang;Bian, Ting-Ting;Zou, Tian-Yu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.429-433
    • /
    • 2013
  • Objectives: To explore the correlation between multi-slice spiral CT (MSCT) perfusion parameters and the expression of vascular endothelial growth factor (VEGF) as well as matrix metalloproteinase-2 (MMP-2) in breast cancer. Methods: Forty five breast cancer patients and 16 patients with benign breast tumor, both confirmed by pathology examination, were enrolled. All underwent MSCT perfusion imaging to obtain perfusion maps and data for parameters including blood flow (BF), blood volume (BV) and permeability surface (PS). Cancer patients did not receive treatment prior to surgery. The expression of VEGF and MMP-2 were examined with both immunohistochemistry and Western blotting. Results: The levels of VEGF and MMP-2 by immunohistochemistry were significantly higher in the breast cancer group (P < 0.01) than the benign tumor group. Relative OD values from Western blotting were also higher in cancer cases (P < 0.05). Similarly, the mean MSCT perfusion parameters (BF, BV, PS) were significantly higher in the breast cancer group (P < 0.01), BF and BV positively correlating with VEGF expression (r = 0.878 and 0.809 respectively, P < 0.01); PS and VEGF and MMP-2 expression were also positively correlated (r= 0.860, 0.786 respectively, P < 0.01). Conclusion: There is a correlation between breast cancer MSCT perfusion parameters and VEGF andMMP-2 expression, which might be useful for detection of breast lesions, qualitative diagnosis of breast cancer, and evaluation of breast cancer treatment.

Ecophysiological Interpretations on the Water Relations Parameters of Trees(VII) - Measurement of Water Flow by the Heat Pulse Method in a Larix leptolepis Stand - (수목(樹木)의 수분특성(水分特性)에 관(關)한 생리(生理)·생태학적(生態學的) 해석(解析)(VII) - Heat pulse법(法)에 의한 낙엽송임분(林分)의 수액류속(樹液流速) 계측(計測) -)

  • Han, Sang Sup;Kim, Sun Hee
    • Journal of Korean Society of Forest Science
    • /
    • v.82 no.2
    • /
    • pp.152-165
    • /
    • 1993
  • This is the basic study in order to know the amount of transpirational water loss in a Larix leptorepis stand by a heat pulse method. Especially this study has been measured and discussed the diurnal and seasonal trends of heat pulse velocity by changes of radiation, temperature and humidity, differences of heat pulse velocity by direction and depth in stem, differences of heat pulse velocity by dominant, codominant and suppressed trees, diurnal change of heat pulse velocity by change of leaf water potential, sap flow path way in sapwood by dye penetration and amount of daily and annual transpiration in a tree and stand. The results obtained as follows : 1. Relation between heat pulse velocity(V) and sap flow rate(SFR) was established as a equation of SFR=1.37V($r=0.96^{**}$). 2. The sap flow rate presented in the order of dominant, codominant and suppressed tree, respectively. The daily heat pulse velocity was changed by radiation, temperature and vapor pressure deficit. 3. The heat pulse velocity in individual trees did not differ in early morning and in late night, but had some differed from 12 to 16 hours when radiation was relatively high. 4. The heat pulse velocity and leaf water potential showed similar diurnal variation. 5. The seasonal variation of heat pulse velocity was highest in August, but lowest in October and similar value of heat pulse velocity in the other months. 6. The heat pulse velocity in stem by direction was highest in eastern, but lowest in southern and similar velocity in western and northern. 7. The difference of heat pulse velocity in according to depths was highest in 2.0cm depth, medium in 1.0cm depth, and lowest in 3.0cm depth from surface of stem. 8. The sap flow path way in stem showed spiral ascent turning right pattern in five sample trees, especially showed little spiral ascent turning right in lower part than 3m hight above ground, but very speedy in higher than 3m hight. 9. The amount of sap flow(SF) was presented as a equation of SF=1.37AV and especially SF in dominant tree was larger than in codominant or suppressed tree. 10. The amount of daily transpiration was 30.8ton/ha/day and its composition ratio was 83% at day and 17% at night. 11. The amount of stand transpiration per month was largest in August(1,194ton/ha/month), lowest in May (386ton/ha/month). The amount of stand transpiration per year was 3,983ton/ha/year.

  • PDF

The Study on the Bi-directional Ejection Air Curtain System for Blocking Smoke Diffusion in case of Tunnel Fire (터널 화재시 연기확산 차단을 위한 양방향 토출 에어커튼 시스템에 대한 연구)

  • Yang, Sang-Ho;Choi, Young-Seok;Kim, Jung-Yup;Kim, Nam-Goo;Kim, Kyung-Yup
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.5
    • /
    • pp.43-53
    • /
    • 2014
  • This paper presents a the study on air curtain system of top and bottom bi-directional jet air discharge for blocking the spread of smoke in case of tunnel fire. The five kinds different air curtains of A, B, C, D, and E of models for various performance tested after manufactured. A results of the various performance test obtained the best efficiency from E model air curtain. And optimize the injection angle of the air curtain nozzle through the three-dimensional computational fluid dynamics (CFD) analysis and analyzed the effects of external pressure of tunnel. and also single factor design have been applied. At present, our attention is focused on the velocity distribution(flow width and flow position) of 1.5m on the ground in tunnel. Also, analyzed the influence of draft in the tunnel. Detailed effects of discharge angle of air curtain and velocity at nozzle exit are discussed.

Internal Flow Analysis of Seawater Cooling Pump using CFD (CFD를 이용한 해수냉각펌프의 내부유동 분석)

  • Bao, Ngoc Tran;Yang, Chang-jo;Kim, Bu-gi;Kim, Jun-ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.1
    • /
    • pp.104-111
    • /
    • 2017
  • This research focuses on simulation and visualization of flow field characteristics inside a centrifugal pump. The 3D numerical analysis was carried out by using a numerical CFD tool, addressing a Reynolds Average Navier-Stock code with a standard k-${\varepsilon}$ two-equation turbulence model. The simulation accounts for friction head loss due to rough walls at suction, impeller, discharge areas and volumetric head loss at impeller wear ring. A comparison of performance curves between simulation and experimentation is included, and it reveals a same trend of those results with a small difference of maximum 5 %. At best efficiency point, velocity vectors are smooth but it changes significantly under off-design point, a strong recirculation appears at the outlet of impeller passages near tongue area. A relatively uniform preassure distribution was observed around the impeller in despite of the tongue. Within the volute, because of its geometry, spiral vortexes formed, proving that the flow field in this region was relatively turbulent and unsteady.

Plasma Engineering for Nano-Materials

  • Kim, Seong-In;Shin, Myoung-Sun;Son, Byung-Koo;Song, Seok-Kyun;Choi, Sun-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.79-79
    • /
    • 2012
  • A high temperature and a low temperature plasma process technologies were developed and demonstrated for synthesis, hybrid formation, surface treatment and CVD engineering of nano powder. RF thermal plasma is used for synthesis of spherical nano particles in a diameter ranged from 10 nm to 100 nm. A variety of nano particules such as Si, Ni, has been synthesized. The diameter of the nano-particles can be controlled by RF plasma power, pressure, gas flow rate and raw material feed rate. A modified RF thermal plasma also produces nano hybrid materials with graphene. Hemispherical nano-materials such as Ag, Ni, Si, SiO2, Al2O3, size ranged from 30 to 100 nm, has been grown on graphene nanoplatelet surface. The coverage ranged from 0.1 to 0.7 has been achieved uniformly over the graphene surface. Low temperature AC plasma is developed for surface modification of nano-powder. In order to have a three dimensional and lengthy plasma treatment, a spiral type of reactor has been developed. A similar plasma reactor has been modfied for nano plasma CVD process. The reactor can be heated with halogen lamp.

  • PDF

A Study on Mechanical Ventilation Characteristics in Cargo Handling Area of Tanker (유조선 화물취급구역내 동력환기특성에 관한 연구)

  • 조대환
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.7 no.1
    • /
    • pp.15-23
    • /
    • 2001
  • In regulation of IGC code 12.1 mechanical ventilation should be arranged to ensure sufficient air movement through the space to avoid the accumulation of flammable or toxic vapours and ensure a safe working environment, but in no case should the ventilation system have a capacity of less than 30 changes of air per hour baed upon the total volume of the space. In this study, a scaled mode chamber was constructed to investigate the ventilation characteristics and stagnation area in the hood room of LNG carrier and pump room in tanker. An experimental study was performed on the model by using visualization equipment with a laser apparatus and an image intensifier CCD camera. Twelve different kinds of measuring areas were selected as the experimental condition. Instant simultaneous velocity vectors in the whole fields were measured by a 2-D PIV system A three-dimensional numerical simulation was also carried out for three different Reynolds numbers. Then the CFD predictions were discussed with the experimental results. The results show the spiral L-shape flow that moves from the opening on the left wall diagonally to the upper right part dominates the ventilation structure. The stationary area of hood room in the velcoity distributions was located in the upper left stern part.

  • PDF

Constraints on Cosmological Models from the Large-Scale Velocity Field

  • Doh, Jean-Gyung;Park, Changbom-;Chun, Mun-Suk
    • Bulletin of the Korean Space Science Society
    • /
    • 1993.04a
    • /
    • pp.16-16
    • /
    • 1993
  • The Cosmic Mach number M is the ratio of the bulk flow velocity of the galaxrvelocity field on some scale R to the unall scale velocity dispersion within refcions of scale R. Because M is the ratio of two velocities, it is inn-dimansionat and the Here, independent of the amplitude of the power specHim and of the biasplnmeter in the linear theory. We have measured the Mach rnlmber for two observational samples: a spiral galaxy sample(AHM) of Aaronson and hiscoBlaborators with absolute distances measured by the infrared Ttillr-Fisher relatioa and an elliptical galaxy sample(EGALS) of Faber or 0, with distances determined by the relation. The effective depths distances of galaxies from the Local Group of these samples are 1639 km/s and 2862 e/s, respectivelr. The Machnumbers from these observed peculiar velocity Selds He fund as M=0.95 for AHMand M=0.59 for EGALS. We comPBre these calculated Mach numbers with thosefrom meck surweys drawn fuom three cosnulogical medels: the stand8rd biased nh=0.5 CDM modet an open CDM rrudel with gh=0.2, and a medd with thepower-law power specelm P(k)-k-1 and n=1. The Mach rnlmber test can give robust constraints on these cosmelogical nudels whose power spectra have very different shapes at large scales.

  • PDF

Condensation and evaporation heat transfer characteristics of HFC-134a in a horizontal smooth and a micro-finned tube (수평 평활관과 마이크로핀 관내에서 HFC-134a의 응축 및 증발열전달 특성)

  • Lee, Sang-Cheon;Park, Byeong-Deok;Han, Un-Hyeok;Lee, Jae-Hui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.5
    • /
    • pp.1725-1734
    • /
    • 1996
  • Experimental condensation and evaporation heat transfer coefficients were measured in a horizontal smooth tube and a horizontal micro-finned tube with HFC-134a. The test sections are straight, horizontal tubes with have a 9.52mm outside diameter and about 5000mm long. The micro-finned tube had 60 fins with a height of 0.12mm and a spiral angle of 25.deg.. The condensation test section was a double-pipe type with counter flow configuration. The evaporation test section employed an electic heating method. Enhancement factors which is defined as a ratio of the heat transfer coefficient for micro-finned tube to that for smooth tube, varied from 1.3 to 1.6(mass flux:110~190kg/m$^{2}$s) for condensation and 1.2 to 1.5 (mass flux:70~160kg/m$^{2}$s) for evaporation. The experimental data of condensation and evaporation heat transfer coefficients were compared to several empirical correlations. Based on these comparisons, modified correlations of the condensation and evaporation heat transfer coefficient for both smooth and micro-finned tubes were proposed.

Effects of Hydrophilic Surface Treatment on Evaporation Heat Transfer at the Outside Wall of Enhanced Tubes (가공관의 외벽에서 친수성 표면처리가 증발열전달에 미치는 영향)

  • Park, No-Seong;Hwang, Gyu-Dae;Kim, Ho-Yeong;Gang, Byeong-Ha;Jeong, Jin-Taek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.666-672
    • /
    • 2001
  • Experiments have been carried out to investigate the evaporation heat transfer characteristics of various tubes on which hydrophilic surface treatment using plasma was employed. Spiral, corrugated and low-finned tubes were selected as test tubes. The evaporator tubes were bundled to form three rows of tubes connected in series, with each row being 400mm long. The results obtained indicate that hydrophilic treated tubes tested exhibit better evaporation heat transfer performance as compared with untreated tubes. It is found that the high wettability of the surface obtained through hydrophilic treatment induces film flow onto the tubes during the evaporation process, while sessile drops are formed on untreated tubes.