• 제목/요약/키워드: spinel phase

검색결과 238건 처리시간 0.049초

Oxalate 침전을 이용한 Li-과량 LiMn$_2$O$_4$ Spinel의 습식합성가 분말 특성 (Wet Chemical Preparation of Li-rich LiMn$_2$O$_4$ Spinel by Oxalate Precipitation)

  • 이병우;김세호
    • 한국세라믹학회지
    • /
    • 제36권7호
    • /
    • pp.698-704
    • /
    • 1999
  • Li rich Li1+xMn2-xO4(x=0.07) spinel powders were prepared by an oxalate precipitation of wet chemical methods at temperature lower than $600^{\circ}C$. The FTIR results showed that the powders prepared at $600^{\circ}C$ had high degree of crystal quality comparing with the spinel powders prepared by solid state reaction at 75$0^{\circ}C$ which was the lowest synthesis temperature of the solid state reaction method. The particle size of powders prepared by the oxalate precipitation at $600^{\circ}C$ was smaller than 0.2${\mu}{\textrm}{m}$ and the specific surface area was 11.01 m2/g A heat treatment over 90$0^{\circ}C$ formed second phase in the precipitates. It was shown that there were phase transitions at temperatures. T1,T2 and T2. The transitions involved weight loss and gain during heating and cooling. The low temperature synthesis below $600^{\circ}C$ avoided the second phase formation and the prepared powders showed improved compositional and physical properties for secondary lithium battery applications.

  • PDF

Sintering and Microstructure of Alumina/Mica and Spinel/Mica Composites

  • Suzuki, Sofia-Saori;Taruta, Seiichi;Takusagawa, Nobuo
    • The Korean Journal of Ceramics
    • /
    • 제4권4호
    • /
    • pp.363-367
    • /
    • 1998
  • Alumina/mica and spinel/mica composites were fabricated by sintering of compacts containing 20 mass% fluoromica ($KMg_3AlSi_3O-{10}F_2$) glass and alumina or spinel. In both composites, mica precipitated as plate-like crystals at temperatures lower than $1300^{\circ}C$ and melted at $1300^{\circ}C$ to $1400^{\circ}C$. In alumina/mica composites, alumina and glass reacted to produce spinel, and the densification progressed by the solution-precipitation of alumina. Consequently, the glass composition changed and the mica did not precipitate at temperatures higher than $1400^{\circ}C$. However, mica precipitated after a reheating process. In spinel/mica composites, the glass composition did not change. After the mica phase melted, it recrystallized during slow cooling. The relative density reached the maximum at $1500^{\circ}C$ for alumina/mica and at $1300^{\circ}C$ spinel/mica composites, and decreased at further high temperatures.

  • PDF

딕카이트의 열적 특성 연구 (Thermal Behavior of Dickite)

  • 조현구
    • 한국광물학회지
    • /
    • 제12권1호
    • /
    • pp.11-22
    • /
    • 1999
  • Thermal behavior of dickite was studied by thermal analysis, X-ray diffraction analysis, electron microprobe analysis, and scanning electron microscopy, Dickite has an endothermic peak at about$ 650^{\circ}C$ and an exothermic one at $960^{\circ}C$ in the differential thermal analysis. The endothermic reaction is assigned to the decomposition of dickite to meta-dickite. Hydroxyl radicals are removed from dickite structure by the reaction, resulting in the weight loss about 10.5~14.5% and appearance of a 14$\AA$ phase different from other kaolin minerals. The reaction slowly proceed in the range of $200^{\circ}C$. As the completion of decomposition, aciclular mullite forms at the expense of meta-dickite plates with random crystallographic relationship. Mullites have diverse silica versus alumina ratio. The exothermic reaction without weight loss seems to be due to the formation of spinel and amorphous silica. The spinel phase shows cryptocrystalline globular morphology accompanying a little amount of silica. From spinel phase shows cryptocrystalling globular morphology accompanying a little amount of silica. From this work, it is suggested that mullite is formed from meta-dickite much lower temperature than the reported one in the previous works.

  • PDF

비오옴 ZnO 세라믹스의 형성과정에서 스피넬의 영향 (Effects of Spinel on the Formation Process of Nonohmic ZnO Ceramics)

  • 김경남;한상목
    • 한국세라믹학회지
    • /
    • 제29권2호
    • /
    • pp.101-106
    • /
    • 1992
  • Sintering behavior, distribution of dopant oxides and electrical properties in the ZnO-Bi2O3-CoO-Sb2O3 and ZnO-Bi2O3-CoO-Sb2O3-Cr2O3 systems were studied. The linear shrinkage of ZnO varistors from 850 to 950$^{\circ}C$ was related to the decomposition reaction (py\longrightarrowsp+Bi2O3) of the pyrochlore phase. In the distribution of the dopant oxides (CoO, Sb2O3, Cr2O3), Co distribute uniformly throughout the sample, the distribution of Sb coincided with small particles (spinel phase, Zn7Sb2O12), and Cr distributed very consistently with Sb. The increase in breakdown voltage, due to the addition of Cr2O3, was not only attributed to the decrease in the ZnO grain size but also to the solution of Cr2O3 in the spinel phase. The leakage current (80% V60 ${\mu}\textrm{A}$) was increased by the addition of Cr2O3.

  • PDF

Oxalate 침전법의 의한 Li$_{1+x}$ Co$_{y}$ Mn$_{2-y}$ $O_4$spinel의 합성 및 고온특성 (Synthesis and high Temperature properties of Li$_{1+x}$ Co$_{y}$ Mn$_{2-y}$ $O_4$spinel prepared by oxalate precipitation)

  • 김세호;이병우
    • 한국결정성장학회지
    • /
    • 제10권3호
    • /
    • pp.239-244
    • /
    • 2000
  • $LiMn_2$$O_4$Spine에 Li 과량 및 Mn 대신 Co를 일부 치환시킨 $_{1+x}$ Co$_{y}$ Mn$_{2-y}$ $O_4$(0$\leq$x$\leq$0.2,y=0,1/9,1/6) spinel에 대한 합성온도 결정, 상의 생성 등 고온 상평형에 대해 연구하였다. 고온 합성에 따른 제 2상의 생성을 방지하기 위해 저온합성이 가능한 습식화학적 합성법중 하나인 oxalate 침전법을 사용하여 $600^{\circ}C$ 이하에서 단일상의 spinel로 합성하였다. 이렇게 합성된 분말에 대해 TG-DTA분석 및 고온에서 급냉한 분말에 대한 XRD분석을 통해 질량(산소)의 증감에 연관된 가역적인 상전이 온도인 $T_1$, $T_2$$T_{2'}$ 들을 확인하였으며, 첨가된 Li의 양과 치환된 Co의 양에 따른 격자상수, 상전이 온도의 변화, 고온상의 안정성 등에 대해 연구하였다. 본 연구를 통해 Li$_{1+x}$ Co$_{y}$ Mn$_{2-y}$ $O_4$spinel의 합성온도 및 냉각속도 둥 합성과정 결정에 필요한 결과들을 얻을 수 있었다.

  • PDF

MgO-Al2O3-SiO2계 요업원료(Mullite, Spinel, Cordierite)의 제조 및 소결특성 II. Alkoxide로 제조한 Mg-Al Spinel분말 및 소결체의 특성 (Fabrication and Sintering Characteristic of MgO-Al2O3-SiO2 System Ceramic Raw Materials(Mullite, Spinel and Cordierite) II. Powder and Mechanical Properties of Mg-Al Spinel Ceramics Prepared by Alkoxide)

  • 김창은;이홍림;안용진;김배연
    • 한국세라믹학회지
    • /
    • 제26권5호
    • /
    • pp.593-600
    • /
    • 1989
  • Fine spinel powder was prepared from the Mg-Al double alkoxide synthesized using magnesium powder, aluminum foil and sec-butyl alcohol. This powder was compared with powder prepared by mixing two commercial alkoxides. The spinelization was started at 50$0^{\circ}C$ and was almost completed at 100$0^{\circ}C$ with a good crystallinity in the double alkoxide system. In mixed alkoxide system, homogeneous spinel powder was not obtained and MgO existed as a second phase because of solubility and hydrolysis rate differences of two alkoxides. The relative density of specimen prepared by double alkoxide was 99% and specimen prepared by mixed alkoxide was 95%. The modulus of rupture of specimens prepared by double alkoxide and mixed alkoxide was 49.9kg/$\textrm{mm}^2$ and 41.6kg/$\textrm{mm}^2$, respectively.

  • PDF

스피넬상 마그네타이트의 수소환원에 의한 활성화 (Activation of Spinel Phase Magnetite by Hydrogen Reduction)

  • 류대선;이동석;이풍헌;김순태
    • 한국세라믹학회지
    • /
    • 제37권6호
    • /
    • pp.559-563
    • /
    • 2000
  • To decompose carbon dioxide, magnetite was synthesized with 0.2M-FeSO4$.$7H2O and 0.5 M-NaOH by coprecipitation. The deoxidized magnetite was prepared from the magnetite by hydrogen reduction for 1, 1.5, 2 hr. The degree of hydrogen reduction and the decomposition rate of carbon dioxide were investigated with hydrogen reduction time. The crystal structure of the magnetite was identified spinel structute by the X-ray powder diffractions. After magnetite was reduced by hydrogen, magnetite reduced by hydrogen become new phae(${\alpha}$-Fe2O3, ${\alpha}$-Fe) and spinel type simultaneously. After decomposing of carbon dioxide at 350$^{\circ}C$, new phse(${\alpha}$-Fe2O3, ${\alpha}$-Fe) were removed and the spinel type only existed. The specific surface area of the synthesized magnetite was 46.69㎡/g. With the increase of the hydrogen reduction time, the grain size, the hydrogen reduction degree and the decomposition rate of carbon dioxide was increased.

  • PDF

반응소결에 의한 지르코니아-스피넬 복합체의 제조 및 성질 (The Fabrication and Their Properties of Zirconia-spinel COmposites by Reaction Sintering)

  • 황규홍;김상모
    • 한국세라믹학회지
    • /
    • 제33권7호
    • /
    • pp.779-784
    • /
    • 1996
  • The spinel/cubic stabilized zirconia composites were fabricated via, The reaction sintering of monoclinic zirco-nia(baddeleyite) added with MgAl powder. During heating Mg and Al were oxidizedfirst and subsequently the oxides formed spinel (MgAl2O4) and finally remained MgO stabilized the zirconia, Because the oxides formed during the oxidation process would have very fine grain size (order of submicron) mainly due to the effects of attrition milling the reaction sintering was more effective in densification and improvement of strength and fracture toughness than conventional sintering with direct addition of MgO. The sintering behavior phase transformation during firing and mechanical properties of sintered body were investigated with emphasis on the relations between spinel formation due to MgAl addition and sintering and mechanical properties.

  • PDF

Thermodynamic Properties of $NiFe_2O_4-NiFe_2O_4$ Spinel Solid Solution

  • 박봉훈;김동수
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권8호
    • /
    • pp.939-942
    • /
    • 1999
  • The tie lines delineating ion-exchange equilibria between NiFe2O4-NiCr2O4 spinel solid solution and Fe2O3-Cr2O3 corundum solid solution were determined at 900, 1000, and 1200 ℃ by electron microprobe and energy dispersive X-ray analysis of oxide phases, using the flux growth technique. Activities of the spinel components were calculated from the tie lines, assuming Temkin's ideal mixing in the corundum solid solution. The spinel phase could be expressed by a regular solution with negative deviations from ideality. The Gibbs free energies of mixing for spinel solid solution were discussed in terms of the cation distribution model, based on site preference energies and assuming random mixing on both tetrahedral and octahedral sites.

Microstructure and Magnetic Property of Nanostructured NiZn Ferrite Powder

  • 남중희
    • 한국세라믹학회지
    • /
    • 제39권12호
    • /
    • pp.1119-1123
    • /
    • 2002
  • Nanostructured spinel NiZn ferrites were prepared by the sol-gel method from metal nitrate raw materials. Analyses by X-ray diffraction and scanning electron microscopy showed the average particle size of NiZn ferrite was under 50 nm. The single phase of NiZn ferrites was obtained by firing at 250${\circ}C$, resulting in nanoparticles exhibiting normal ferrimagnetic behavior. The nanostructured $Ni_{1-X}Zn_XFe_2O_4$ (x=0.0∼1.0) were found to have the cubic spinel structure of which the lattice constants ${\alpha}_2$ increases linearly from 8.339 to 8.427 ${\AA}$ with increasing Zn content x, following Vegard's law, approximately. The saturation magnetization $M_s$ was 48 emu/g for x=0.4 and decreased to 8.0 emu/g for higher Zn contents suggesting the typical ferrimagnetism in mixed spinel ferrites. Pure NiZn ferrite phase substituted by Cu was observed before using the additive but hematite phase was partially appeared at $Ni_{0.2}Zn_{0.2}Cu_{0.6}Fe_2O_4$. On the other hand, the hematite phase in this NiZn Cu ferrite was disappeared after using the additive of acethyl aceton with small amount. The saturation magnetization Ms of $Ni_{0.2}Zn_{0.8-y}Cu_yFe_2O_4$(y=0.2∼0.6) as measured was about 51 emu/g at 77K and 19 emu/g at room temperature, respectively.