• Title/Summary/Keyword: spindle current

Search Result 124, Processing Time 0.045 seconds

Tool Fracture Detection in Milling Process (II) -Part 2: Tool Fracture Detection in Rough Milling Using Spindle Motor Current- (밀링 공정시 공구 파손 검출 (II) -제 2 편: 주축모터 전류를 이용한 밀링의 황삭 가공 중 공구파손 검출-)

  • 김기대;이강희;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.5
    • /
    • pp.110-119
    • /
    • 1998
  • Dynamic cutting force variations in milling process were measured indirectly using spindle motor current. Magnitude of the spindle motor current is independent of cutting direction. Quasi-static sensitivity of the spindle motor current is higher than that of the feed motor current. Dynamic sensitivity of the spindle motor current is lower but cutting force was correctly represented by spindle RMS current in rough milling. In rough milling, chipping and tool fracture were well detected by the proposed tool fracture index using spindle motor current.

  • PDF

Indirect Cutting Force Measurement and Cutting Force Regulation Using Spindle Motor Current (주축모터 전류를 통한 절삭력의 간접 측정 및 절삭력 추종제어)

  • Kim, Gi D.;Kwon, Won T.;Chu, Chong N.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.10
    • /
    • pp.15-27
    • /
    • 1997
  • Quasti-static cutting force variations in milling process are measured indirectly using spindle motor current. Quasi-static sensitivity of the spindle motor current is higher than that of the feed motor current. Magnitude of the spindle motor current is independent of cutting direction. The linear relationship between the cutting force and the spimdle motor RMS current at various spindle rotational speed is obtained. Frequency/ Voltage(F/V) converter voltage is measured to identify the spindle speed and to determine the cutting force at various spindle speeds. Overload on the tool during milling process can be detected using the proposed indirect cutting force measurement. Based on these measurements, cutting force is regulated at a constant level by feedrate control.

  • PDF

Cutting Force Estimation and Feedrate Adaptive Control Using Spindle Motor Current (주축전류신호를 이용한 절삭력의 추정과 이송속도 적응제어)

  • 김기대;이성일;권원태;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.150-156
    • /
    • 1996
  • Static variations of cutting forces are estimated using spindle motor current. Static sensitivity of spindle motor current is higher than feed motor current. The linear relationship between the cutting force and RMS value of the spindle motor current is obtained. Using cutting force estimation, tool overload in milling process can be well detected, and cutting force is regulated at a constant level by feedrate adaptive control.

  • PDF

Feed and spindle motor currents as monitoring parameters in cutting process (절삭공정 모니터링을 위한 이송모터의 주축모터 전류)

  • 오영탁;김기대;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.555-559
    • /
    • 2001
  • Feed and spindle motor currents are used toi monitor the cutting process practically. The sensitivity of spindle drive system is lower than that of feed drive system, but the cutting torque is represented well by the spindle motor current. During multi-axis cutting, it is difficult to calculate the resultant cutting force using feed motor currents, because each feed force is reflected by each axis feed motor current with different time delay. It is also difficult to compensate the frictional torque using the feed motor current, because the magnitude of the frictional torque is dependent of the feedrate, table position, and cutting direction. On the other hand, cutting torque can be estimated well using spindle motor current which is independent of the cutting direction.

  • PDF

A Study on the Machining characteristics in the Cylindrical Plunge Grinding using Spindle Motor Current Signal (주축모터전류신호를 이용한 원통 연삭시 가공 특성에 관한 연구)

  • 김남훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.507-512
    • /
    • 1999
  • In modern engineering practice, the grinding process is one of the most important and widely used operations for the precision finishing of components. In this paper, machining characteristics of external plunge grinding were investigated by using spindle motor current signal through hall sensor. Grinding experiments were performed in terms of various grinding conditions such as wheel speed, workpiece speed, infeed rate and spark-out time with conventional vitrified bonded WA wheel. The relationship between spindle motor current signal and metal removal rate in terms of infeed rate was induced the by analyzing spindle motor current signal.

  • PDF

Diagnosis of Cutting Stability of Portable Automatic Beveling Machine Using Spindle Motor Current (주축 모터를 이용한 포터블 자동 면취기의 가공 안정성 진단)

  • Kim, Tae Young;An, Byeong Hun;Kim, Hwa Young
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.57-63
    • /
    • 2022
  • This study describes a system that monitors the tool and cutting state of automatic beveling operation in real time. As a signal for cutting state monitoring, a motor current detected from the spindle drive system of the automatic beveling machine is used to monitor abnormal state. Because automatic beveling is processed using a face milling cutter, the cutting force mechanism is the same as the milling process. The predicted cutting torque is obtained using a cutting force model based on specific cutting resistance. Then, the predicted cutting torque is converted into the spindle motor current value, and cutting state stability is diagnosed by comparing it with the motor current value detected during beveling operation. The experimental results show that the spindle motor current can detect abnormal cutting state such as overload and tool wear during beveling operation, and can diagnose the cutting stability using the proposed equip-current line diagram.

Study on Prediction of Drill Breakage using Spindle and Z-axis Motor Currents (주축 및 Z축 모터전류를 이용한 드릴파손 예측에 관한 연구)

  • Kim, Hwa-Young;Ahn, Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.101-108
    • /
    • 1999
  • A reliable and practical monitoring of drill breakage is a crucial technique in automatic machining system. In this study, a real-time monitoring system was developed to predict drill breakage using both spindle and z-axis motor current. Drill breakage is monitored by detecting the level of residual motor current which is obtained through the moving average filter algorithm. The residual exhibits a feature of sharp decrease just before drill breakage. Therefore, drill breakage can be predicted by detecting this characteristic of residual component. Z-axis motor current is better to predict the drill breakage than spindle motor current, because the former is faster in response than the latter when drill breakage is occurred. The evaluation experiments have shown that the developed monitoring system works very well.

  • PDF

Development of Sensor for Magnetically Levitated High Speed Spindle System (자기 부상 고속 주축계의 센서 개발)

  • Shin, Woo-Cheol;Lee, Dong-Ju;Hong, Jun-Hee;Noh, Myoung-Gyu
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.987-992
    • /
    • 2000
  • In a high speed spindle system, it is very important to monitor the operation of the spindle to prevent catastrophic damage to the system. Widely used sensors for monitoring are eddy-current and capacitive types. These sensors provide high accuracy of monitoring, but their steep prices lead to expensive high speed spindle systems. The main goal of our research is to develop technology for producing high speed spindle system utilizing magnetic bearings. As active magnetic bearings require position sensors for feedback control, a noncontact position sensor is being developed as a part of this main goal. Once developed, it will contribute to affordable high speed spindle system. This paper describes the selection process of the sensor types and the design of the driving circuit. We also report the experimental results that characterize the static and dynamic performances of the inductive sensor.

  • PDF

The Organization of Rotational Accuracy Measurement System of NC Lathe Spindle (NC 선반 주축의 회전정도 측정 시스템의 구성)

  • Kim, Young-Seuk
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.5
    • /
    • pp.21-26
    • /
    • 2005
  • It is important to measure the rotational accuracy of NC lathe spindle as it affects to the qualities of all machines machined by the NC lathe using in industries. The bad rotational accuracy of NC lathe spindle are caused mainly by wearness of the spindle in using and quality of spindle when machining and using low level bearings. It occurs especially in case of NC lathes because the cutting force acting to work-piece act on one side to the spindle not to both sides symmetrically. Therefore in this study, constructing experimental appratus for measuring of rotational accuracy by using eddy current type gap sensors, converters, screw terminal, data acquisition board inserted in computer and software f3r data acquisition, DT VEE ver. 5.0 and then error data acquired in the rotational accuracy test of NC lathe spindle are analysed in plots and statistical treatments.

Development of Inductive Sensor in Magnetic Bearing Spindle System (자기 베어링 주축시스템의 유도형 센서 개발)

  • Shin, Woo-Cheol;Lee, Dong-Ju;Hong, Jun-Hee;Noh, Myoung-Gyu
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.32-37
    • /
    • 2000
  • In a high speed spindle system, it is very important to monitor the operation of the spindle to prevent catastrophic damage to the system. Widely used sensors for monitoring are eddy-current and capacitive types. These sensors provide high accuracy of monitoring, but their steep prices lead to expensive high speed spindle system. The main god of our research is to develop technology to produce high speed spindle system utilizing magnetic bearings. As active magnetic bearings require position sensors for feedback control, a noncontact position sensor is bang developed as a part of this main goal. Once developed, it will contribute to affordable high speed spindle system. In this paper, we report the selection process of the sensor types and the experimental results with driving circuits.

  • PDF