• Title/Summary/Keyword: spherical shell

Search Result 172, Processing Time 0.025 seconds

Preparation and Sintering Behavior of Fe Nanopowders Produced by Plasma Arc Discharge Process

  • Choi, Chul-Jin;Yu, Ji-Hun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.284-285
    • /
    • 2006
  • The nano-sized Fe powders were prepared by plasma arc discharge process using pure Fe rod. The microstructure and the sintering behavior of the prepared nanopowders were evaluated. The prepared Fe nanopowders had nearly spherical shapes and consisted of metallic core and oxide shell structures. The higher volume shrinkage at low sintering temperature was observed due to the reduction of surface oxide. The nanopowders showed 6 times higher densification rate and more significant isotropic shrinkage behavior than those of micron sized Fe powders.

  • PDF

Heat Transfer in the Vertical Type Fluidized Bed Heat Exchanger with Corrugated Tubes (파형관을 갖는 수직형 순환유동층 열교환기의 열전달)

  • Ahn Soo Whan;Bae Sung Taek;Kim Myung Ho;Lee Byung-Chang;Lee Yoon Pyo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1149-1155
    • /
    • 2004
  • An experimental study was performed to investigate the characteristics of heat transfer in a vertical type fluidized bed shell-and-tube type heat exchanger with corrugated tube. Seven different solid particles having the same volume were circulated in the heat of exchanger. The effects of various parameters such as water flow rates, particle geometries, materials, and corrugated tube geometries were investigated. The present work showed that the higher thermal capacities of materials and the geometries closer to the spherical one have higher heat transfer performances. In addition, heat transfer coefficients in the corrugated tubes were a little higher than those in the smooth tubes.

Photoionization and Raman-scattered He II features in young planetary nebulae

  • Kim, Mi-Kyung;Lee, Hee-Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.69.4-70
    • /
    • 2020
  • Raman-scattered He II features are known to be present in several young planetary nebulae (PNe) including NGC 7027, NGC 6302, IC 5117 and NGC 6790. These features provide a new spectroscopic window to probe both thick neutral regions and far UV regions near Lyman series. We carry out photoionization model calculations using 'CLOUDY' to explore He II emission strengths dependent on the physical conditions of the central star. The emission nebula is treated as a simple spherical shell with uniform density. It is found that detectable Raman-scattered He II are obtained for T∗ ~ 105 K in the presence of a thick neutral component. We present mock spectra exhibiting Raman He II features based on the photoionization calculations and compare them with observed data. We discuss effective strategies for searching young PNe with Raman-scattered He II emissivities.

  • PDF

Ultrastructural Study on Spermatogenesis and Sexual Maturation of the Male Jicon Scallop, Chlamys farreri on the West Coast of Korea

  • Chung, Ee-Yung;Park, Ki-Yeol;Song, Pal-Won
    • The Korean Journal of Malacology
    • /
    • v.21 no.2 s.34
    • /
    • pp.95-105
    • /
    • 2005
  • Gonadosomatic index, reproductive cycle, spermatogenesis and first sexual maturity of Chlamys farreri were investigated by cytological and histological observations, from January 1998 to December 1999. The gonadosomatic index (GSI) rapidly increased in April and reached a maximum in May when seawater temperature rapidly increase. Then the GSI gradually decreased from June to August when spawning occur. Accordingly, monthly changes in the GSI in males coincide with the reproductive cycle. The spermatozoon of Chlamys farreri is the primitive type found in external fertilization species. The head of the spermatozoon is approximately $2.75{\mu}m$ in length including the acrosome measuring about $0.50{\mu}m$ in length, and its tail was approximately $20{\mu}m$, the axoneme of the tail flagellum consists of nine pairs of microtubules at the periphery and a pair at the center. Five spherical mitochondria around the centriole (the satellite body) appear in the middle piece of the sperm. The spawning period was from June to August and the main spawning occurs from July to August when seawater temperatures are greater than $20^{\circ}C$ The reproductive cycle of this species can be categorized into five successive stages; early active stage (January to March), late active stage (March to April), ripe stage (April to August), partially spawned stage (June to August), and spent/inactive stage (August to January). Over 50% of male scallops attained first sexual maturity between 50.0 and 60.0 mm in shell height, and 100% of those over 60.0 mm in shell height achieved maturity. Accordingly, we assume that male individuals begin reproduction at three years of age.

  • PDF

Characteristic Analysis of Poly(4-Vinyl Phenol) Based Organic Memory Device Using CdSe/ZnS Core/Shell Qunatum Dots

  • Kim, Jin-U;Kim, Yeong-Chan;Eom, Se-Won;No, Yong-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.289.1-289.1
    • /
    • 2014
  • In this study, we made a organic thin film device in MIS(Metal-Insulator-Semiconductor) structure by using PVP (Poly vinyl phenol) as a insulating layer, and CdSe/ZnS nano particles which have a core/shell structure inside. We dissolved PVP and PMF in PGMEA, organic solvent, then formed a thin film through a spin coating. After that, it was cross-linked by annealing for 1 hour in a vacuum oven at $185^{\circ}C$. We operated FTIR measurement to check this, and discovered the amount of absorption reduced in the wave-length region near 3400 cm-1, so could observe decrease of -OH. Boonton7200 was used to measure a C-V relationship to confirm a properties of the nano particles, and as a result, the width of the memory window increased when device including nano particles. Additionally, we used HP4145B in order to make sure the electrical characteristics of the organic thin film device and analyzed a conduction mechanism of the device by measuring I-V relationship. When the voltage was low, FNT occurred chiefly, but as the voltage increased, Schottky Emission occurred mainly. We synthesized CdSe/ZnS and to confirm this, took a picture of Si substrate including nano particles with SEM. Spherical quantum dots were properly made. Due to this study, we realized there is high possibility of application of next generation memory device using organic thin film device and nano particles, and we expect more researches about this issue would be done.

  • PDF

Vibration analysis and optimization of functionally graded carbon nanotube reinforced doubly-curved shallow shells

  • Hammou, Zakia;Guezzen, Zakia;Zradni, Fatima Z.;Sereir, Zouaoui;Tounsi, Abdelouahed;Hammou, Yamna
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.155-169
    • /
    • 2022
  • In the present paper an analytical model was developed to study the non-linear vibrations of Functionally Graded Carbon Nanotube (FG-CNT) reinforced doubly-curved shallow shells using the Multiple Scales Method (MSM). The nonlinear partial differential equations of motion are based on the FGM shallow shell hypothesis, the non-linear geometric Von-Karman relationships, and the Galerkin method to reduce the partial differential equations associated with simply supported boundary conditions. The novelty of the present model is the simultaneous prediction of the natural frequencies and their mode shapes versus different curvatures (cylindrical, spherical, conical, and plate) and the different types of FG-CNTs. In addition to combining the vibration analysis with optimization algorithms based on the genetic algorithm, a design optimization methode was developed to maximize the natural frequencies. By considering the expression of the non-dimensional frequency as an objective optimization function, a genetic algorithm program was developed by valuing the mechanical properties, the geometric properties and the FG-CNT configuration of shallow double curvature shells. The results obtained show that the curvature, the volume fraction and the types of NTC distribution have considerable effects on the variation of the Dimensionless Fundamental Linear Frequency (DFLF). The frequency response of the shallow shells of the FG-CNTRC showed two types of nonlinear hardening and softening which are strongly influenced by the change in the fundamental vibration mode. In GA optimization, the mechanical properties and geometric properties in the transverse direction, the volume fraction, and types of distribution of CNTs have a considerable effect on the fundamental frequencies of shallow double-curvature shells. Where the difference between optimized and not optimized DFLF can reach 13.26%.

Equivalent static wind load estimation in wind-resistant design of single-layer reticulated shells

  • Li, Yuan-Qi;Tamura, Yukio
    • Wind and Structures
    • /
    • v.8 no.6
    • /
    • pp.443-454
    • /
    • 2005
  • Wind loading is very important, even dominant in some cases, to large-span single-layer reticulated shells. At present, usually equivalent static methods based on quasi-steady assumption, as the same as the wind-resistant design of low-rise buildings, are used in the structural design. However, it is not easy to estimate a suitable equivalent static wind load so that the effects of fluctuating component of wind on the structural behaviors, especially on structural stability, can be well considered. In this paper, the effects of fluctuating component of wind load on the stability of a single-layer reticulated spherical shell model are investigated based on wind pressure distribution measured simultaneously in the wind tunnel. Several methods used to estimate the equivalent static wind load distribution for equivalent static wind-resistant design are reviewed. A new simple method from the stability point of view is presented to estimate the most unfavorable wind load distribution considering the effects of fluctuating component on the stability of shells. Finally, with comparisive analyses using different methods, the efficiency of the presented method for wind-resistant analysis of single-layer reticulated shells is established.

Full ice-cream cone model for halo coronal mass ejections

  • Na, Hyeonock;Moon, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.65.3-66
    • /
    • 2015
  • The determination of three dimensional parameters (e.g., radial speed, angular width, source location) of Coronal Mass Ejections (CMEs) is very important for space weather forecast. To estimate these parameters, several cone models based on a flat cone or a shallow ice-cream cone with spherical front have been suggested. In this study, we investigate which cone model is proper for halo CME morphology using 33 CMEs which are identified as halo CMEs by one spacecraft (SOHO or STEREO-A or B) and as limb CMEs by the other ones. From geometrical parameters of these CMEs such as their front curvature, we find that near full ice-cream cone CMEs (28 events) are dominant over shallow ice-cream cone CMEs (5 events). So we develop a new full ice-cream cone model by assuming that a full ice-cream cone consists of many flat cones with different heights and angular widths. This model is carried out by the following steps: (1) construct a cone for given height and angular width, (2) project the cone onto the sky plane, (3) select points comprising the outer boundary, (4) minimize the difference between the estimated projection points with the observed ones. We apply this model to several halo CMEs and compare the results with those from other methods such as a Graduated Cylindrical Shell model and a geometrical triangulation method.

  • PDF

LINEAR POLARIZATION OF A DOUBLE PEAKED BROAD EMISSION LINE IN ACTIVE GALACTIC NUCLEI

  • Lee, Hee-Won
    • Journal of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.59-65
    • /
    • 2011
  • A small number of active galactic nuclei are known to exhibit prominent double peak emission profiles that are well-fitted by a relativistic accretion disk model. We develop a Monte Carlo code to compute the linear polarization of a double peaked broad emission line arising from Thomson scattering. A Keplerian accretion disk is adopted for the double peak emission line region and the geometry is assumed to be Schwarzschild. Far from the accretion disk where flat Minkowski geometry is appropriate, we place an azimuthally symmetric scattering region in the shape of a spherical shell sliced with ${\Delta}{\mu}=0.1$. Adopting a Monte Carlo method we generate line photons in the accretion disk in arbitrary directions in the local rest frame and follow the geodesic paths of the photons until they hit the scattering region. The profile of the polarized flux is mainly determined by the relative location of the scattering region with respect to the emission source. When the scattering region is in the polar direction, the degree of linear polarization also shows a double peak structure. Under favorable conditions we show that up to 0.6% linear polarization may be obtained. We conclude that spectropolarimetry can be a powerful probe to reveal much information regarding the accretion disk geometry of these active galactic nuclei.

Mold Filling Analysis and Post-deformation Analysis of Injection-molded Aspheric Lenses for a Mobile Phone Camera Module (휴대폰 카메라용 비구면렌즈의 성형해석 및 후변형해석)

  • Park, Keun;Eom, Hyeju;Ahn, Jong-Ho
    • Design & Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.12-17
    • /
    • 2012
  • In order to produce high-quality optical components, aspheric lenses have been widely applied in recent years. An aspheric lens consists of aspheric surfaces instead of spherical ones, which causes difficulty in the design process as well as the manufacturing procedure. Although injection molding is widely used to fabricate optical lenses owing to its high productivity, there remains lots of difficulty to determine appropriate mold design factors and injection molding parameters. In the injection molding fields, computer simulation has been effectively applied to analyze processes based on the shell analysis so far. Considering the geometry of optical lenses, a full-3d simulation based on solid elements has been reported as a reliable approach. The present work covers three-dimensional injection molding simulation and relevant deformation analysis of an injection molded plastic lens based on 3d solid elements. Numerical analyses have been applied to the injection molding processes of three aspheric lenses for an image sensing module of a mobile phone. The reliability of the proposed approach has been verified in comparison with the experimental results.

  • PDF