• Title/Summary/Keyword: spent nuclear fuels

Search Result 195, Processing Time 0.03 seconds

SHIELDING ANALYSIS OF DUAL PURPOSE CASKS FOR SPENT NUCLEAR FUEL UNDER NORMAL STORAGE CONDITIONS

  • Ko, Jae-Hun;Park, Jea-Ho;Jung, In-Soo;Lee, Gang-Uk;Baeg, Chang-Yeal;Kim, Tae-Man
    • Nuclear Engineering and Technology
    • /
    • v.46 no.4
    • /
    • pp.547-556
    • /
    • 2014
  • Korea expects a shortage in storage capacity for spent fuels at reactor sites. Therefore, a need for more metal and/or concrete casks for storage systems is anticipated for either the reactor site or away from the reactor for interim storage. For the purpose of interim storage and transportation, a dual purpose metal cask that can load 21 spent fuel assemblies is being developed by Korea Radioactive Waste Management Corporation (KRMC) in Korea. At first the gamma and neutron flux for the design basis fuel were determined assuming in-core environment (the temperature, pressure, etc. of the moderator, boron, cladding, $UO_2$ pellets) in which the design basis fuel is loaded, as input data. The evaluation simulated burnup up to 45,000 MWD/MTU and decay during ten years of cooling using the SAS2H/OGIGEN-S module of the SCALE5.1 system. The results from the source term evaluation were used as input data for the final shielding evaluation utilizing the MCNP Code, which yielded the effective dose rate. The design of the cask is based on the safety requirements for normal storage conditions under 10 CFR Part 72. A radiation shielding analysis of the metal storage cask optimized for loading 21 design basis fuels was performed for two cases; one for a single cask and the other for a $2{\times}10$ cask array. For the single cask, dose rates at the external surface of the metal cask, 1m and 2m away from the cask surface, were evaluated. For the $2{\times}10$ cask array, dose rates at the center point of the array and at the center of the casks' height were evaluated. The results of the shielding analysis for the single cask show that dose rates were considerably higher at the lower side (from the bottom of the cask to the bottom of the neutron shielding) of the cask, at over 2mSv/hr at the external surface of the cask. However, this is not considered to be a significant issue since additional shielding will be installed at the storage facility. The shielding analysis results for the $2{\times}10$ cask array showed exponential decrease with distance off the sources. The controlled area boundary was calculated to be approximately 280m from the array, with a dose rate of 25mrem/yr. Actual dose rates within the controlled area boundary will be lower than 25mrem/yr, due to the decay of radioactivity of spent fuel in storage.

Sensitivity Analysis of Thermal Parameters Affecting the Peak Cladding Temperature of Fuel Assembly

  • Ju-Chan Lee;Doyun Kim;Seung-Hwan Yu;Sungho Ko
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.3
    • /
    • pp.359-370
    • /
    • 2023
  • The thermal integrity of spent nuclear fuels has to be maintained during their long-term dry storage. The detailed temperature distributions of spent fuel assemblies are essential for evaluating the integrity of their dry storage systems. In this study, a subchannel analysis model was developed for a canister of a single fuel assembly using the COBRA-SFS code. The thermal parameters affecting the peak cladding temperature (PCT) of the spent fuel assembly were identified, and sensitivity analyses were performed based on these parameters. The subchannel analysis results indicated the presence of a recirculation flow, based on natural convection, between the fuel assembly and downcomer region. The sensitivity analysis of the thermal parameters indicated that the PCT was affected by the emissivity of the fuel cladding and basket, convective heat transfer coefficient, and thermal conductivity of the fluid. However, the effects of the wall friction factor of the canister, form loss coefficient of the grid spacers, and thermal conductivities of the solid materials, on the PCT were predominantly ignored.

Korean Reference Disposal System for High-level Radioactive Wastes

  • Choi Heui-Joo;Choi Jongwon;Lee Jong Youl
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.225-235
    • /
    • 2005
  • This paper outlined the status of the development of Korean Reference Disposal (KRS­1) system for high-level radioactive wastes. The repository concept was based on the engineering barrier system which KAERI has developed through a long-term research and development program. The design requirements were prepared for the conceptual design of the repository. The amount of PWR and CANDU spent fuels were projected with the current nuclear power plan. The disposal rates of PWR and CANDU spent fuels were analyzed. The reference geologic characteristics including classification of fracture zones were set for the KRS. The disposal concepts and the layout of the repository were described.

  • PDF

Separation of Fission Product Elements from Synthetic Dissolver Solutions of Spent Pressurized Water Reactor Fuels by $TBP/XAD-16/HNO_3$Extraction Chromatography ($TBP/XAD-16/HNO_3$추출 크로마토그래피에 의한 모의 사용후핵연료 용해용액 중 미량 핵분열생성물 원소의 분리)

  • Lee, Chang Heon;Choi, Kwang Soon;Kim, Jung Suk;Choi, Ke Chon;Jee, Kwang Yong;Kim, Won Ho
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.4
    • /
    • pp.304-311
    • /
    • 2001
  • A study has been carried out on the extraction chromatographic separation of fission products from spent pressurized water reactor (PWR) fuels for inductively coupled plasma atomic emission spectrometric analysis. Impregnation capacity of tri-n-butyl phosphate (TBP), which is well known as an extractant in the field of uranium separation from various nuclear grade materials, on Amberlite XAD polymeric macroporous support materials was measured. Amberlite XAD-16 of which the surface area is the highest was selected as a support material because its TBP impregnation capacity was the largest in Amberlite XADs. Sorption behaviour of this TBP impregnated resin was investigated for the fission product elements using acidic solutions simulated for dissolver solutions of spent PWR fuels. The parameters affecting the performance of the separation system were optimized. The fission product elements studied excluding Pd and Ru were quantitatively recovered with the precision of less than 3.1%.

  • PDF

Determination of plutonium and uranium content and burnup using six group delayed neutrons

  • Akyurek, T.;Usman, S.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.943-948
    • /
    • 2019
  • In this study, investigation of spent fuel was performed using six group delayed neutron parameters. Three used fuels (F1, F2, and F11) which are burnt over the years in the core of Missouri University of Science and Technology Reactor (MSTR), were investigated. F16 fresh fuel was used as plutonium free fuel element and compared with irradiated used fuels to develop burnup and Pu discrimination method. The fast fission factor of the MSTR was calculated to be 1.071 which was used for burnup calculations. Burnup values of F2 and F11 fuel elements were estimated to be 1.98 g and 2.7 g, respectively. $^{239}Pu$ conversion was calculated to be 0.36 g and 0.50 g for F2 and F11 elements, respectively.

Experiment on Cutting the SUS and Zircaloy Tubes by Cutter Blade (Cutter blade에 의한 SUS 및 지르칼로이 튜브 절단 실험)

  • 정재후;윤지섭;홍동희;김영환;박기용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.651-654
    • /
    • 2001
  • In the dismantling process of nuclear spent fuels, the spent fuel rod cutting process, followed immediately by the decladding process, performs the cutting the spent fuel rods to a proper length for fast decladding operation. In this paper, we analyzed the chemical compositions, mechanical properties, and physical characteristics for SUS and zircaloy tubes in order to identify the feasibility of cutter-blade type in cutting SUS and zircaloy tubes. It is considered that material, shape and angle, and heat treatment for fabricating the highly durable cutter blade and also it is investigated that the round-shape sustenance of cross-section, amount of debris production, and fire occurrence for measuring the cutting performance on SUS and zircaloy tubes, spent fuel rod cutting device is designed to be operated automatically through the remote control system for use in Hot Cell(radioactive) area and the electro-driven mechanical parts are modularized for easy maintenance. Results from various experiments confirm the efficiency of this device.

  • PDF

Chlorination of TRU/RE/SrOx in Oxide Spent Nuclear Fuel Using Ammonium Chloride as a Chlorinating Agent

  • Yoon, Dalsung;Paek, Seungwoo;Lee, Sang-Kwon;Lee, Ju Ho;Lee, Chang Hwa
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.2
    • /
    • pp.193-207
    • /
    • 2022
  • Thermodynamically, TRUOx, REOx, and SrOx can be chlorinated using ammonium chloride (NH4Cl) as a chlorinating agent, whereas uranium oxides (U3O8 and UO2) remain in the oxide form. In the preliminary experiments of this study, U3O8 and CeO2 are reacted separately with NH4Cl at 623 K in a sealed reactor. CeO2 is highly reactive with NH4Cl and becomes chlorinated into CeCl3. The chlorination yield ranges from 96% to 100%. By contrast, U3O8 remains as UO2 even after chlorination. We produced U/REOx- and U/SrOx-simulated fuels to understand the chlorination characteristics of the oxide compounds. Each simulated fuel is chlorinated with NH4Cl, and the products are dissolved in LiCl-KCl salt to separate the oxide compounds from the chloride salt. The oxide compounds precipitate at the bottom. The precipitate and salt phases are sampled and analyzed via X-ray diffraction, scanning electron microscope-energy dispersive spectroscopy, and inductively coupled plasma-optical emission spectroscopy. The analysis results indicate that REOx and SrOx can be easily chlorinated from the simulated fuels; however, only a few of U oxide phases is chlorinated, particularly from the U/SrOx-simulated fuels.

Direct Determination of Tellurium in Simulated Nuclear Spent Fuels by Hydride Generation-Inductively Coupled Plasma Atomic Emission Spectrometry (수소화물 생성-유도결합플라스마 원자방출분광법을 이용한 모의사용후 핵연료 중의 텔루르 분석)

  • Choi, Kwang Soon;Lee, Chang Heon;Han, Sun Ho;Joe, Kih Soo;Kim, Won Ho
    • Analytical Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.781-788
    • /
    • 2000
  • Tellurium in simulated nuclear spent fuels (SIMFUEL) has been determined by hydride generation-inductively coupled plasma atomic emission spectrometry (HG-ICP-AES). Parameters such as concentrations of HCl and $NaBH_4$, flow rate of HCl and $NaBH_4$ were optimized and then the effects of U, Mo, Pd, Rh and Ru on the Te intensity were investigated. A thiourea as a masking agent was used to eliminate or minimize such interferences specially caused by palladium. Tellurium was measured by HG-ICP-AES and ICP-MS after separation of tellurium from SIMFUEL with cation exchange chromatography. The relative deviation between direct measurement and separation method was less than 6% based on the data by ICP-MS.

  • PDF