• Title/Summary/Keyword: spent PWR fuel

Search Result 226, Processing Time 0.028 seconds

Physics analysis of new TRU recycling options using FCM and MOX fueled PWR assemblies

  • Cho, Ye Seul;Hong, Ser Gi
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.689-699
    • /
    • 2020
  • In this work, new multi-recycling options of TRU nuclides using PWR fuel assemblies comprised of MOX and FCM (Fully Ceramic Micro Encapsulated) fuels are suggested and neutronically analyzed. These options do not use a fully recycling of TRU but a partial recycling where TRUs from MOX fuels are recycled while the ones from FCM fuels are not recycled due to their high consumption rate resulted from high burnup. In particular, additional external TRU feed in MOX fuels for each cycle was considered to significantly increase the TRU consumption rate and the finally selected option is to use external TRU and enriched uranium feed as a makeup for the heavy metal consumption in MOX fuels. This hybrid external feeding of TRU and enriched uranium in MOX fuel was shown to be very effective in significantly increasing TRU consumption rate, maintaining long cycle length, and achieving negative void reactivity worth during recycling.

Estimation of Decay Heat Generated from Long-Term Management of Spent Fuel (장기관리 핵연료로부터 방출되는 붕괴열량 추정)

  • Park, J.W.;J.H.Whang;Chun, K.S.;Park, H.S.
    • Nuclear Engineering and Technology
    • /
    • v.21 no.1
    • /
    • pp.48-55
    • /
    • 1989
  • In this study, simple functional forms which could predict decay heat are referred to and modified in order to analyse more easily long-term behavior of decay heat generated from domestic PWR and CANDU spent fuel. To reduce the difference between the predicted data by functional forms and ORIGEN 2 results and to predict the decay heat under the important parameter(s), sensitivity analysis is performed. By introducing the identified hey parameter, turnup, into the functional forms, the decay heat of spent fuels within a limited rangs of cooling time(3~500 years) becomes predictable for various turnup rates. The predicted decay heat of spent fuels with representative turnup rates such as 33, 37 and 40 GWD/MTU by the functional forms is in so good agreement with ORIGEN 2 results within $\pm$10% difference over the cooling time from 1 to 10$^{5}$ years that the functional forms presented here may be used for engineering purposes such as the thermal design and assessment of the facilities associated with spent fuel management.

  • PDF

A Study on the Methodology for Economic and Environmental Friendliness Analysis of Back-End Nuclear Fuel Cycles

  • Song, Jong-Soon;Chang, Soo-Young;Ko, Won-Il;Oh, Won-Zin
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.4
    • /
    • pp.361-368
    • /
    • 2003
  • The economic and environmental friendliness analysis of the nuclear fuel cycle options that can be expected in Korea were performed. Options considered are direct disposal, reprocessing and DUPIC (Direct Use of Spent PWR Fuel In CANDU Reactors). By considering the result of calculation of the annual uranium requirement and nuclear spent fuel generation by analysis of nuclear fuel material flows in the nuclear fuel cycle options, we decided the time of back-end nuclear fuel cycle processes and the volume. Then we can analyze the economic and environmental friendliness by applying the unit cost and unit value of each process, respectively.

ARISING TECHNICAL ISSUES IN THE DEVELOPMENT OF A TRANSPORTATION AND STORAGE SYSTEM OF SPENT NUCLEAR FUEL IN KOREA

  • Yoo, Jeong-Hyoun;Choi, Woo-Seok;Lee, Sang-Hoon;Seo, Ki-Seog
    • Nuclear Engineering and Technology
    • /
    • v.43 no.5
    • /
    • pp.413-420
    • /
    • 2011
  • In Korea, although the concept of dry storage system for PWR spent fuels first emerged in the early 1990s, wet storage inside nuclear reactor buildings remains the dominant storage paradigm. Furthermore, as the amount of discharged fuel from nuclear power plants increases, nuclear power plants are confronted with the problem of meeting storage capacity demand. Various measures have been taken to resolve this problem. Dry storage systems along with transportation of spent fuel either on-site or off-site are regarded as the most feasible measure. In order to develop dry storage and transportation system safety analyses, development of design techniques, full scale performance tests, and research on key material degradation should be conducted. This paper deals with two topics, structural analysis methodology to assess cumulative damage to transportation packages and the effects of an aircraft engine crash on a dual purpose cask. These newly emerging issues are selected from among the many technical issues related to the development of transportation and storage systems of spent fuels. In the design process, appropriate analytical methods, procedures, and tools are used in conjunction with a suitably selected test procedure and assumptions such as jet engine simulation for postulated design events and a beyond design basis accident.

Decay Heat Evaluation of Spent Fuel Assemblies in SFP of Kori Unit-1

  • Kim, Kiyoung;Kim, Yongdeog;Chung, Sunghwan
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2018.11a
    • /
    • pp.104-104
    • /
    • 2018
  • Kori Unit 1 is the first permanent shutdown nuclear power plant in Korea and it is on June 18th, 2017. Spent fuel assemblies began to be discharged from the reactor core to the spent fuel pool(SFP) within one week after shutdown of Kori unit 1 and the campaign was completed on June 27th, 2017. The total number of spent nuclear fuel assemblies in SFP of Kori Unit-1 is 485 and their discharging date is different respectively. So, decay heat was evaluated considering the actual enrichment, operation history and cooling time of the spent fuel assemblies stored in SFP of the Kori Unit-1. The code used in the evaluation is the ORIGEN-based CAREPOOL system developed by KHNP. Decay heat calculation of PWR fuel is based on ANSI/ANS 5.1-2005, "Decay heat power in light water reactors" and ISO-10645, "Nuclear energy - Light water reactors - Calculation of the decay heat power in nuclear fuels. Also, we considered the contribution of fission products, actinide nuclides, neutron capture and radioactive material in decay heat calculation. CAREPOOL system calculates the individual and total decay heat of all of the spent fuel assemblies in SFP of Kori Unit-1. As a result, the total decay heat generated in SFP on June 28th, 2017 when the spent fuel assemblies were discharged from the reactor core, is estimated to be about 4,185.8 kw and to be about 609.5 kw on September 1st, 2018. It was also estimated that 119.6 kw is generated in 2050 when it is 32 years after the permanent shutdown. Figure 1 shows the trend of total decay heat in SFP of Kori Unit-1.

  • PDF

Investigation of Pellet-Clad Mechanical Interaction in Failed Spent PWR Fuel

  • Jung, Yang Hong;Baik, Seung Je
    • Corrosion Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.175-181
    • /
    • 2019
  • A failed spent fuel rod with 53,000 MWd/tU from a nuclear power plant was characterized, and the fission products and oxygen layer in the pellet-clad mechanical interaction region were observed using an EPMA (Electron Probe Micro-Analyzer). A sound fuel rod burned under similar conditions was used to compare and analyze, the results of the failed fuel rod. In the failed fuel rod, the oxide layer represented $10{\mu}m$ of the boundary of the cladding, and $35{\mu}m$ of the region outside the cladding. By comparison, in the sound fuel rod, the oxide layer was $8{\mu}m$, observed in the cladding boundary region. The cladding inner surface corrosion and the resulting fuel-cladding bonding were investigated using an EPMA. Zirconium existed in the bonding layer of the (U, Zr)O compound beyond the pellet cladding interaction gap of $20{\mu}m$, and composition of UZr2O3 was observed in the failed fuel rod. This paper presents the results of the EPMA examination of a spent fuel specimen, and a technique to analyze fission products in the pellet-clad mechanical interaction region.

Cesium Release Behavior during the Thermal Treatment of High Bum-up Spent PWR Fuel (고연소도 경수로 사용후핵연료의 열처리에 따른 세슘 방출거동)

  • Park, Geun-Il;Cho, Kwang-Hun;Lee, Jung-Won;Park, Jang-Jin;Yang, Myung-Seung;Song, Kee-Chan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.1
    • /
    • pp.53-64
    • /
    • 2007
  • The dynamic release behavior of Cs from high burn-up spent PWR fuel was experimentally performed under the conditions of a thermal treatment process such as voloxidation and sintering conditions. In voloxidation process, influence of the oxidation and reduction atmosphere on the Cs release characteristic using fragment type of spent fuel heated up to $1,500^{\circ}C$ was compared. In sintering process, temperature history effect on Cs release behavior was evaluated using green pellet under 4% $H_2/Ar$ environment. Temperature range for complete Cs release from spent fuel fragment under voloxidation condition was about $800^{\circ}C{\sim}1,200^{\circ}C$, but that of green pellet under the reduction atmosphere was $1,100^{\circ}C{\sim}1,400^{\circ}C$. Key parameters on Cs release behavior from spent fuel was powder formation as well as the diffusion rate of Cs compound to grain boundary and fuel surface.

  • PDF

Correlations between Zirconium Isotopes and Burnup Parameters in PWR Spent Nuclear Fuels

  • Kim, Jung-Suk;Chun, Young-Shin;Lee, Chang heon;Kim, Won-Ho;Eom, Tae-Yun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.551-556
    • /
    • 1998
  • The correlation of isotope composition of Zr with the turnup and some heavy isotopes in PWR uranium dioxide fuel has been investigated. The total and partial ($^{235}$ U) burnup were determined by $^{148Nd}$ and by U and Pu mass spectrometric method, respectively. After separating Zr from the fuel samples, its isotope composition was measured by mass spectrometry. In addition, the quantities of the U and Pu in the spent fuel were determined by isotope di lution mass spectrometric method using $^{233}$ U and $^{242}$ Pu as spikes. The content of some heavy isotopes, $^{235}$ U, $^{239}$ Pu and $^{241}$ Pu, and the Pu Contribution to total turnup were expressed by the correlation with Zr isotope ratios, $^{91}$ Zr/$^{96}$ Zr and $^{93}$ Zr/$^{96}$ Zr The correlations by isotope compositions measured were compared wi th those calculated from ORIGEN2 code.

  • PDF

Projection and Burnup Trends of Spent Nuclear Fuel in Korea (국내 사용후핵연료 현황 분석)

  • 조동건;최종원;이희환
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.261-267
    • /
    • 2004
  • Inventories, projections, and characteristics of spent nuclear fuel(SNF) generated from domestic nuclear power plants were updated to support high-level waste disposal system design. The historical and projected inventory by the end 2055 is expected to be 20,500 and 14,800MTU for PWR and CANDU spent nuclear fuel, respectively The ratio of quantity for TEX>$17{\times}17$ SNF was shown to be 0.6 as of 2003. The amount of TEX>$17{\times}17$ SNF, however, will be less than that of TEX>$16{\times}16$ KSFA after 2012, while the quantity of TEX>$16{\times}16$ KSFA will reach to 70% of the total spent fuels in the 2055. Average turnup of SNF revealed ~36GWD/MTU and ~40GWD/MTU for the period of 1994-1999 and 2000-2003, respectively. It is expected that the average burnup of SNF will exceed 45GWD/MTU at the end of 2000's. Therefore, it seems reasonable to use the TEX>$17{\times}17$ 4.5w/o, 45GWD/MTU as the Reference SNF at present state. The TEX>$16{\times}16$ KSFA 4.5w/o, 55GWD/MTU, however, should be Reference SNF after ~2010.

  • PDF

SHIELDING PERFORMANCE OF A NEWLY DESIGNED TRANSPORT CASK IN THE ADVANCED CONDITIONING SPENT FUEL PYROPROCESS FACILITIY

  • Park, Chang-Je;Jeong, Chang-Joon;Min, Deok-Ki;Kang, Hee-Young;Choi, Woo-Seok;Lee, Joo-Chan;Bang, Gyeoung-Sik;Seo, Ki-Seog
    • Nuclear Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.319-326
    • /
    • 2008
  • To transport process wastes efficiently from the Advanced Spent Fuel Conditioning Pyro-process Facility (ACPF) at the Korea Atomic Energy Research Institute (KAERI), a new hot cell cask has been designed based on an existing hot cell padirac transport cask, with not only a neutron absorber for improved shielding capability, but also a docking facility for an easy docking system. In the new hot cell cask, two kinds of materials have been considered as shielding materials, polyethylene and resin. To verify the transport compatibility of the waste and spent fuel for the ACPF, neutron and photon shielding calculations were performed using the MCNPX code. The source term was evaluated by the ORIGEN-ARP code system based on spent PWR fuel. From the calculation, it was found that the maximum surface dose rates of the hot cell cask with the two candidates were estimated within the limit (2 mSv/hr).